MECHANICS OF MATERIALSW/CONNECT>(LL)<>
MECHANICS OF MATERIALSW/CONNECT>(LL)<>
7th Edition
ISBN: 9781260572308
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 1.2, Problem 16P

Two wooden planks, each 1 2 in. thick and 9 in. wide, are joined by the dry mortise joint shown. Knowing that the wood used shears off along its grain when the average shearing stress reaches 1.20 ksi, determine the magnitude P of the axial load that will cause the joint to fail.

Fig. P1.16

Chapter 1.2, Problem 16P, Two wooden planks, each 12 in. thick and 9 in. wide, are joined by the dry mortise joint shown.

Blurred answer
Students have asked these similar questions
Each of the three aluminum bars shown is to be twisted through an angle of 2.1°. Knowing that b = 30 mm, τall = 50 MPa, and G = 27 GPa, determine the shortest allowable length of each bar. Refer to Table 3.1. The shortest allowable length of bar (a) is  mm.   The shortest allowable length of bar (b) is  mm.   The shortest allowable length of bar (c) is  mm.
Two links BF are made of steel with a 450-MPa ultimate normal stress and has a 6x12–mm uniform rectangular cross section. Links BF are connected to members ABD and CDEF by 8-mm diameter pins; ABD and CDEF are connected together by a 10-mm diameter pin; CDEF is connected to the support by a 10-mm diameter pin; all of the pins are made of steel with a 170 MPa ultimate shearing stress. Knowing that a factor of safety of 3 is desired, determine the largest load P that may be applied
A 5.3-m-long steel rod must not stretch more than 2.71 mm and the normal stress must not exceed 181 MPa when the rod is subjected to a 9.99-kNaxial load. Knowing that E = 199.3 GPa, determine the required radius of the rod in mm.  Express your answer in four decimal places.

Chapter 1 Solutions

MECHANICS OF MATERIALSW/CONNECT>(LL)<>

Ch. 1.2 - For the Pratt bridge truss and loading shown,...Ch. 1.2 - The frame shown consists of four wooden members,...Ch. 1.2 - An aircraft tow bar is positioned by means of a...Ch. 1.2 - Two hydraulic cylinders are used to control the...Ch. 1.2 - Determine the diameter of the largest circular...Ch. 1.2 - Two wooden planks, each 12 in. thick and 9 in....Ch. 1.2 - When the force P reached 1600 lb, the wooden...Ch. 1.2 - A load P is applied to a steel rod supported as...Ch. 1.2 - The axial force in the column supporting the...Ch. 1.2 - Three wooden planks are fastened together by a...Ch. 1.2 - A 40-kN axial load is applied to a short wooden...Ch. 1.2 - An axial load P is supported by a short W8 40...Ch. 1.2 - Link AB, of width b = 2 in. and thickness t=14...Ch. 1.2 - Determine the largest load P that can be applied...Ch. 1.2 - Knowing that = 40 and P = 9 kN, determine (a) the...Ch. 1.2 - The hydraulic cylinder CF, which partially...Ch. 1.2 - For the assembly and loading of Prob. 1.7,...Ch. 1.2 - Two identical linkage-and-hydraulic-cylinder...Ch. 1.5 - Two wooden members of uniform rectangular cross...Ch. 1.5 - Two wooden members of uniform rectangular cross...Ch. 1.5 - The 1.4-kip load P is supported by two wooden...Ch. 1.5 - Two wooden members of uniform cross section are...Ch. 1.5 - A centric load P is applied to the granite block...Ch. 1.5 - A 240-kip load P is applied to the granite block...Ch. 1.5 - A steel pipe of 400-mm outer diameter is...Ch. 1.5 - A steel pipe of 400-mm outer diameter is...Ch. 1.5 - A steel loop ABCD of length 5 ft and of 38-in....Ch. 1.5 - Link BC is 6 mm thick, has a width w = 25 mm, and...Ch. 1.5 - Link BC is 6 mm thick and is made of a steel with...Ch. 1.5 - Members AB and BC of the truss shown are made of...Ch. 1.5 - Members AB and BC of the truss shown are made of...Ch. 1.5 - Link AB is to be made of a steel for which the...Ch. 1.5 - Two wooden members are joined by plywood splice...Ch. 1.5 - For the joint and loading of Prob. 1.43, determine...Ch. 1.5 - Three 34-in.-diameter steel bolts are to be used...Ch. 1.5 - Three steel bolts are to be used to attach the...Ch. 1.5 - A load P is supported as shown by a steel pin that...Ch. 1.5 - A load P is supported as shown by a steel pin that...Ch. 1.5 - A steel plate 14 in. thick is embedded in a...Ch. 1.5 - Determine the factor of safety for the cable...Ch. 1.5 - Link AC is made of a steel with a 65-ksi ultimate...Ch. 1.5 - Solve Prob. 1.51, assuming that the structure has...Ch. 1.5 - Each of the two vertical links CF connecting the...Ch. 1.5 - Solve Prob. 1.53, assuming that the pins at C and...Ch. 1.5 - In the structure shown, an 8-mm-diameter pin is...Ch. 1.5 - In an alternative design for the structure of...Ch. 1.5 - Prob. 57PCh. 1.5 - The Load and Resistance Factor Design method is to...Ch. 1 - In the marine crane shown, link CD is known to...Ch. 1 - Two horizontal 5-kip forces are applied to pin B...Ch. 1 - For the assembly and loading of Prob. 1.60,...Ch. 1 - Two steel plates are to be held together by means...Ch. 1 - A couple M of magnitude 1500 N m is applied to...Ch. 1 - Knowing that link DE is 18 in. thick and 1 in....Ch. 1 - A 58-in.-diameter steel rod AB is fitted to a...Ch. 1 - In the steel structure shown, a 6-mm-diameter pin...Ch. 1 - Prob. 67RPCh. 1 - A force P is applied as shown to a steel...Ch. 1 - The two portions of member AB are glued together...Ch. 1 - The two portions of member AB are glued together...
Knowledge Booster
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • Knowing that a 0.02-in. gap exists when the temperature is 75°F, determine (a) the temperature at which the normal stress in the alumi-num bar will be equal to –11 ksi, (b) the corresponding exact length of the aluminum bar.
    A load P is applied to a steel rod supported as shown by an aluminum plate into which a 0.6-in.-diameter hole has been drilled. Knowing that the shearing stress must not exceed 18 ksi in the steel rod and10 ksi in the aluminum plate, determine the largest load P that may be applied to the rod.
    PART 2: Determine the shear force acting at each of the following locations: (a) x = 0+ ft (i.e., just to the right of support A) (b) x = 14.0 ft (i,e., at point B.) (c) x = 20.5- ft (i.e., just to the left of the support C) (d) x = 20.5+ ft (i.e., just to the right of the support (C) (e)x=27.5ft Note that x = 0 at support A. When entering your answers, use the shear-force sign convention detailed in Section 7.2. My Answers: Correct (a) V= 105.823 kips (b)V= -48.177 kips (c) V= -119.677 kips (d)V= 88 kips (e) V= 10.9998 kips PART 3: Determine the bending moment acting at each of the following locations: (a) x = 14.0- ft (i.e., just to the left of point B.) (b) x = 14.0+ ft(i.e., just to the right of point B.) (c) x = 20.5 ft (i.e. at point C) (d)x=27.5ft Note that x = 0 at support A. When entering your answers, use the shear-force sign convention detailed in Section 7.2. My Answers: Correct (a) M = 403.522 kips-ft (b) M = 193.522 kips-ft (c) M = -352.0035 kips-ft (d) M =…
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Elements Of Electromagnetics
    Mechanical Engineering
    ISBN:9780190698614
    Author:Sadiku, Matthew N. O.
    Publisher:Oxford University Press
    Mechanics of Materials (10th Edition)
    Mechanical Engineering
    ISBN:9780134319650
    Author:Russell C. Hibbeler
    Publisher:PEARSON
    Thermodynamics: An Engineering Approach
    Mechanical Engineering
    ISBN:9781259822674
    Author:Yunus A. Cengel Dr., Michael A. Boles
    Publisher:McGraw-Hill Education
  • Control Systems Engineering
    Mechanical Engineering
    ISBN:9781118170519
    Author:Norman S. Nise
    Publisher:WILEY
    Mechanics of Materials (MindTap Course List)
    Mechanical Engineering
    ISBN:9781337093347
    Author:Barry J. Goodno, James M. Gere
    Publisher:Cengage Learning
    Engineering Mechanics: Statics
    Mechanical Engineering
    ISBN:9781118807330
    Author:James L. Meriam, L. G. Kraige, J. N. Bolton
    Publisher:WILEY
  • Elements Of Electromagnetics
    Mechanical Engineering
    ISBN:9780190698614
    Author:Sadiku, Matthew N. O.
    Publisher:Oxford University Press
    Mechanics of Materials (10th Edition)
    Mechanical Engineering
    ISBN:9780134319650
    Author:Russell C. Hibbeler
    Publisher:PEARSON
    Thermodynamics: An Engineering Approach
    Mechanical Engineering
    ISBN:9781259822674
    Author:Yunus A. Cengel Dr., Michael A. Boles
    Publisher:McGraw-Hill Education
    Control Systems Engineering
    Mechanical Engineering
    ISBN:9781118170519
    Author:Norman S. Nise
    Publisher:WILEY
    Mechanics of Materials (MindTap Course List)
    Mechanical Engineering
    ISBN:9781337093347
    Author:Barry J. Goodno, James M. Gere
    Publisher:Cengage Learning
    Engineering Mechanics: Statics
    Mechanical Engineering
    ISBN:9781118807330
    Author:James L. Meriam, L. G. Kraige, J. N. Bolton
    Publisher:WILEY
    EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY