
Concept explainers
GO In Fig-12-39, a 55 kg rock climber is in a lie-back climb along a fissure, with hands pulling on one side of the fissure and feet pressed against the opposite side. The fissure has width w = 0.20 m, and the center of mass of the climber is a horizontal distance d = 0.40 m from the fissure. The coefficient of static friction between hands and rock is μ1 = 0.40, and between boots and rock it is μ2= 1.2. (a) What is the least horizontal pull by the hands and push by the feet that will keep the climber stable? (b) For the horizontal pull of (a), what must be the vertical distance h between hands and feet?If the climber encounters wet rock, so that μ1 and μ2 reduced, what happens to (c) the answer to (a) and (d) the answer to (b)?
Figure 12-39 Problem 22.

Want to see the full answer?
Check out a sample textbook solution
Chapter 12 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Campbell Essential Biology with Physiology (5th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Microbiology: An Introduction
College Physics: A Strategic Approach (3rd Edition)
- Answer the assignment 2 question and show step-by-step solution. This is from Chapter 4 off of the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forwardA small block of mass m = 2 kg is fired with an initial speed v₁ = 9 m/s along a horizontal section of frictionless track, as shown in the top portion of the figure. The block then moves along the frictionless semicircular vertical track of radius R = 0.5m. Part 1 m ·L· Мк R Determine the force exerted by the track on the block at point A. F = number (rtol=0.05, atol=1e-08) N ? Part 2 The bottom of the track consists of a horizontal section (L = 11 m) with friction. Determine the coefficient of kinetic friction between the block and the bottom portion of the track if the block just makes it to point B before coming to rest. μk = number (rtol=0.05, atol=1e-08)arrow_forwardA small block of mass m = 4.75 kg is fired with an initial speed v₁ = 7 m/s along a horizontal section of frictionless track, as shown in the top portion of the figure. The block then moves along the frictionless semicircular vertical track of radius R = 1m. B Part 1 m -L Мік R Determine the force exerted by the track on the block at point A. F = number (rtol=0.05, atol=1e-08) N Part 2 A The bottom of the track consists of a horizontal section (L = 10 m) with friction. Determine the coefficient of kinetic friction between the block and the bottom portion of the track if the block just makes it to point B before coming to rest. μk = number (rtol=0.05, atol=1e-08)arrow_forward
- A small block of mass m = 4.75 kg is fired with an initial speed v₁ = 7 m/s along a horizontal section of frictionless track, as shown in the top portion of the figure. The block then moves along the frictionless semicircular vertical track of radius R = 1m. B Part 1 m -L Мік R Determine the force exerted by the track on the block at point A. F = number (rtol=0.05, atol=1e-08) N Part 2 A The bottom of the track consists of a horizontal section (L = 10 m) with friction. Determine the coefficient of kinetic friction between the block and the bottom portion of the track if the block just makes it to point B before coming to rest. μk = number (rtol=0.05, atol=1e-08)arrow_forwardShown below are two carts connected by a cord that passes over a small frictionless pulley. Each cart rolls freely with negligible friction. 1. Calculate the magnitude of the acceleration of each cart 2. Calculate the magnitude of the tension in the cord. 10 kg 37° ΟΠΟ 53° 15 kgarrow_forwardAn object with a mass of 10.0 kg is placed on a rough horizontal table. The object is then connected to a cable that passes over a pulley and is fastened to a hanging object with a mass of 5.00 kg. 1. What is the minimum force of friction required to keep the objects in equilibrium? 2. What is the coefficient of static friction between m₁ and the table? Must show complete and concise work. m₁ m2arrow_forward
- TH A m₁ m2 Two blocks (m₁ = 10 kg, m2 = 4 kg) are in contact on a frictionless table. A constant horizontal force of magnitude FA=6 N is applied to the larger block as shown. (Hint: watch the tutorial) 1. Find the magnitude of the force F, 1 on 2 2. Find the magnitude of the force F 2 on 1 exerted by the larger block on the smaller block. exerted by the smaller block on the larger block.arrow_forwardThree cables support the traffic light as shown. If the traffic light weighs 183 N, what is T2? 41.0° 63.0° T3 2arrow_forward人 O Macmillan Learning IH = Ic = Question 9 of 10 > The circuit to the right consists of a battery (Vo and five resistors (R₁ R4 = 211 Ω, R2 = 682 2, R3 == 334 2, and R5 = = 4.50 V) = $363 £2, 765 2). Determine the current I point passing through each of the specified points. II IF = MA R₁ www Vo A BC Ꭰ mA mA R2 www R3 محمد www RA www E F G H R5 wwwarrow_forward
- Answer the assignment 1 question and show step-by-step solution. This is from Chapter 3 off of the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forwardAnswer the assignment 2 question and show step-by-step solution. This is from Chapter 3 off of the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forwardAnswer the assignment 1 questions a & b, and show step-by-step solution. This is from Chapter 3 off of the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning





