BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Evaluate the integrals in Problems 1-26.

(a)

(b) ( x 2 1 ) 10 x d x

(c) ( x 2 1 ) 7 3 x d x

(d) ( x 2 1 ) 2 / 3 x d x

(a)

To determine

To calculate: The value of the integral (x21)4xdx.

Explanation

Given Information:

The provided integral is (x21)4xdx.

Formula used:

According to the power formula of integrals, if u=u(x),

Then, undu=un+1n+1+C.

Calculation:

Consider the provided integral,

(x21)4xdx

Rewrite the integral by multiplying and dividing by 2 as,

12(x21)42xdx

Consider the power rule of integrals,

undu=un+1n+1+C

Now, to use the power rule, the integrand should have the function u(x) and its derivative u(x) where, n1.

Here,

u=x21, u=2x and n=4,

Since, all required values are present, so the integral is of the form,

12(x21)42xdx=12u4

(b)

To determine

To calculate: The value of the integral (x21)10xdx.

(c)

To determine

To calculate: The value of the integral (x21)73xdx.

(d)

To determine

To calculate: The value of the integral (x21)2/3xdx.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 12 Solutions

Show all chapter solutions add
Sect-12.1 P-9ESect-12.1 P-10ESect-12.1 P-11ESect-12.1 P-12ESect-12.1 P-13ESect-12.1 P-14ESect-12.1 P-15ESect-12.1 P-16ESect-12.1 P-17ESect-12.1 P-18ESect-12.1 P-19ESect-12.1 P-20ESect-12.1 P-21ESect-12.1 P-22ESect-12.1 P-23ESect-12.1 P-24ESect-12.1 P-25ESect-12.1 P-26ESect-12.1 P-27ESect-12.1 P-28ESect-12.1 P-29ESect-12.1 P-30ESect-12.1 P-31ESect-12.1 P-32ESect-12.1 P-33ESect-12.1 P-34ESect-12.1 P-35ESect-12.1 P-36ESect-12.1 P-37ESect-12.1 P-38ESect-12.1 P-39ESect-12.1 P-40ESect-12.1 P-41ESect-12.1 P-42ESect-12.1 P-43ESect-12.1 P-44ESect-12.1 P-45ESect-12.1 P-46ESect-12.1 P-47ESect-12.1 P-48ESect-12.1 P-49ESect-12.1 P-50ESect-12.1 P-51ESect-12.1 P-52ESect-12.1 P-53ESect-12.1 P-54ESect-12.1 P-55ESect-12.1 P-56ESect-12.2 P-1CPSect-12.2 P-2CPSect-12.2 P-3CPSect-12.2 P-4CPSect-12.2 P-1ESect-12.2 P-2ESect-12.2 P-3ESect-12.2 P-4ESect-12.2 P-5ESect-12.2 P-6ESect-12.2 P-7ESect-12.2 P-8ESect-12.2 P-9ESect-12.2 P-10ESect-12.2 P-11ESect-12.2 P-12ESect-12.2 P-13ESect-12.2 P-14ESect-12.2 P-15ESect-12.2 P-16ESect-12.2 P-17ESect-12.2 P-18ESect-12.2 P-19ESect-12.2 P-20ESect-12.2 P-21ESect-12.2 P-22ESect-12.2 P-23ESect-12.2 P-24ESect-12.2 P-25ESect-12.2 P-26ESect-12.2 P-27ESect-12.2 P-28ESect-12.2 P-29ESect-12.2 P-30ESect-12.2 P-31ESect-12.2 P-32ESect-12.2 P-33ESect-12.2 P-34ESect-12.2 P-35ESect-12.2 P-36ESect-12.2 P-37ESect-12.2 P-38ESect-12.2 P-39ESect-12.2 P-40ESect-12.2 P-41ESect-12.2 P-42ESect-12.2 P-43ESect-12.2 P-44ESect-12.2 P-45ESect-12.2 P-46ESect-12.2 P-47ESect-12.2 P-48ESect-12.2 P-49ESect-12.2 P-50ESect-12.2 P-51ESect-12.2 P-52ESect-12.2 P-53ESect-12.2 P-54ESect-12.3 P-1CPSect-12.3 P-2CPSect-12.3 P-3CPSect-12.3 P-1ESect-12.3 P-2ESect-12.3 P-3ESect-12.3 P-4ESect-12.3 P-5ESect-12.3 P-6ESect-12.3 P-7ESect-12.3 P-8ESect-12.3 P-9ESect-12.3 P-10ESect-12.3 P-11ESect-12.3 P-12ESect-12.3 P-13ESect-12.3 P-14ESect-12.3 P-15ESect-12.3 P-16ESect-12.3 P-17ESect-12.3 P-18ESect-12.3 P-19ESect-12.3 P-20ESect-12.3 P-21ESect-12.3 P-22ESect-12.3 P-23ESect-12.3 P-24ESect-12.3 P-25ESect-12.3 P-26ESect-12.3 P-27ESect-12.3 P-28ESect-12.3 P-29ESect-12.3 P-30ESect-12.3 P-31ESect-12.3 P-32ESect-12.3 P-33ESect-12.3 P-34ESect-12.3 P-35ESect-12.3 P-36ESect-12.3 P-37ESect-12.3 P-38ESect-12.3 P-39ESect-12.3 P-40ESect-12.3 P-41ESect-12.3 P-42ESect-12.3 P-43ESect-12.3 P-44ESect-12.3 P-45ESect-12.3 P-46ESect-12.3 P-47ESect-12.3 P-48ESect-12.3 P-49ESect-12.3 P-50ESect-12.3 P-56ESect-12.4 P-1CPSect-12.4 P-2CPSect-12.4 P-3CPSect-12.4 P-4CPSect-12.4 P-1ESect-12.4 P-2ESect-12.4 P-3ESect-12.4 P-4ESect-12.4 P-5ESect-12.4 P-6ESect-12.4 P-7ESect-12.4 P-8ESect-12.4 P-9ESect-12.4 P-10ESect-12.4 P-11ESect-12.4 P-12ESect-12.4 P-13ESect-12.4 P-14ESect-12.4 P-15ESect-12.4 P-16ESect-12.4 P-17ESect-12.4 P-18ESect-12.4 P-19ESect-12.4 P-20ESect-12.4 P-21ESect-12.4 P-23ESect-12.4 P-24ESect-12.4 P-26ESect-12.5 P-1CPSect-12.5 P-2CPSect-12.5 P-3CPSect-12.5 P-1ESect-12.5 P-2ESect-12.5 P-3ESect-12.5 P-4ESect-12.5 P-5ESect-12.5 P-6ESect-12.5 P-7ESect-12.5 P-8ESect-12.5 P-9ESect-12.5 P-10ESect-12.5 P-11ESect-12.5 P-12ESect-12.5 P-13ESect-12.5 P-14ESect-12.5 P-15ESect-12.5 P-16ESect-12.5 P-17ESect-12.5 P-18ESect-12.5 P-19ESect-12.5 P-20ESect-12.5 P-21ESect-12.5 P-22ESect-12.5 P-23ESect-12.5 P-24ESect-12.5 P-25ESect-12.5 P-26ESect-12.5 P-27ESect-12.5 P-28ESect-12.5 P-29ESect-12.5 P-30ESect-12.5 P-31ESect-12.5 P-32ESect-12.5 P-33ESect-12.5 P-34ESect-12.5 P-35ESect-12.5 P-36ESect-12.5 P-37ESect-12.5 P-38ESect-12.5 P-39ESect-12.5 P-40ESect-12.5 P-41ESect-12.5 P-42ESect-12.5 P-43ESect-12.5 P-44ESect-12.5 P-45ESect-12.5 P-46ESect-12.5 P-47ESect-12.5 P-48ESect-12.5 P-49ESect-12.5 P-50ESect-12.5 P-51ESect-12.5 P-52ESect-12.5 P-53ESect-12.5 P-54ESect-12.5 P-55ESect-12.5 P-56ESect-12.5 P-57ESect-12.5 P-58ECh-12 P-1RECh-12 P-2RECh-12 P-3RECh-12 P-4RECh-12 P-5RECh-12 P-6RECh-12 P-7RECh-12 P-8RECh-12 P-9RECh-12 P-10RECh-12 P-11RECh-12 P-12RECh-12 P-13RECh-12 P-14RECh-12 P-15RECh-12 P-16RECh-12 P-17RECh-12 P-18RECh-12 P-19RECh-12 P-20RECh-12 P-21RECh-12 P-22RECh-12 P-23RECh-12 P-24RECh-12 P-25RECh-12 P-26RECh-12 P-27RECh-12 P-28RECh-12 P-29RECh-12 P-30RECh-12 P-31RECh-12 P-32RECh-12 P-33RECh-12 P-34RECh-12 P-35RECh-12 P-36RECh-12 P-37RECh-12 P-38RECh-12 P-39RECh-12 P-40RECh-12 P-41RECh-12 P-42RECh-12 P-43RECh-12 P-44RECh-12 P-45RECh-12 P-46RECh-12 P-47RECh-12 P-48RECh-12 P-49RECh-12 P-1TCh-12 P-2TCh-12 P-3TCh-12 P-4TCh-12 P-5TCh-12 P-6TCh-12 P-7TCh-12 P-8TCh-12 P-9TCh-12 P-10TCh-12 P-11TCh-12 P-12TCh-12 P-13TCh-12 P-14TCh-12 P-15TCh-12 P-16TCh-12 P-17TCh-12 P-18TCh-12 P-19TCh-12 P-20TCh-12 P-21TCh-12 P-22T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Exponential Equations of Quadratic Type Solve the equation. 39. e2x 3ex + 2 = 0

Precalculus: Mathematics for Calculus (Standalone Book)

In Exercises 35-42, find functions f and g such that h = g f. (Note: The answer is not unique.) 40. h(x)=1x24

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Find the limit. 33. limu1u41u3+5u26u

Single Variable Calculus

A definite integral for the length of the curve given by for 1 ≤ t ≤ 2 is:

Study Guide for Stewart's Multivariable Calculus, 8th

True or False: y = xex is a solution to y=y+yx.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th