BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Evaluate the integrals in Problems 1-26.

6.   ( x 3 3 x 2 ) 5 ( x 2 2 x )

To determine

To calculate: The value of the integral (x33x2)5(x22x)dx.

Explanation

Given Information:

The provided integral is (x33x2)5(x22x)dx

Formula used:

According to the power formula of integrals, if u=u(x) then,

undu=un+1n+1+C

Calculation:

Consider the provided integral:

(x33x2)5(x22x)dx

Multiply and divide by 3 and rewrite the integral as,

13(x33x2)5(3x26x)dx

Consider the power rule of integrals:

undu=un+1n+1+C

Now, to use the power rule, the integrand should have the function u(x) and its derivative u(x) and n1

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 12 Solutions

Show all chapter solutions add
Sect-12.1 P-9ESect-12.1 P-10ESect-12.1 P-11ESect-12.1 P-12ESect-12.1 P-13ESect-12.1 P-14ESect-12.1 P-15ESect-12.1 P-16ESect-12.1 P-17ESect-12.1 P-18ESect-12.1 P-19ESect-12.1 P-20ESect-12.1 P-21ESect-12.1 P-22ESect-12.1 P-23ESect-12.1 P-24ESect-12.1 P-25ESect-12.1 P-26ESect-12.1 P-27ESect-12.1 P-28ESect-12.1 P-29ESect-12.1 P-30ESect-12.1 P-31ESect-12.1 P-32ESect-12.1 P-33ESect-12.1 P-34ESect-12.1 P-35ESect-12.1 P-36ESect-12.1 P-37ESect-12.1 P-38ESect-12.1 P-39ESect-12.1 P-40ESect-12.1 P-41ESect-12.1 P-42ESect-12.1 P-43ESect-12.1 P-44ESect-12.1 P-45ESect-12.1 P-46ESect-12.1 P-47ESect-12.1 P-48ESect-12.1 P-49ESect-12.1 P-50ESect-12.1 P-51ESect-12.1 P-52ESect-12.1 P-53ESect-12.1 P-54ESect-12.1 P-55ESect-12.1 P-56ESect-12.2 P-1CPSect-12.2 P-2CPSect-12.2 P-3CPSect-12.2 P-4CPSect-12.2 P-1ESect-12.2 P-2ESect-12.2 P-3ESect-12.2 P-4ESect-12.2 P-5ESect-12.2 P-6ESect-12.2 P-7ESect-12.2 P-8ESect-12.2 P-9ESect-12.2 P-10ESect-12.2 P-11ESect-12.2 P-12ESect-12.2 P-13ESect-12.2 P-14ESect-12.2 P-15ESect-12.2 P-16ESect-12.2 P-17ESect-12.2 P-18ESect-12.2 P-19ESect-12.2 P-20ESect-12.2 P-21ESect-12.2 P-22ESect-12.2 P-23ESect-12.2 P-24ESect-12.2 P-25ESect-12.2 P-26ESect-12.2 P-27ESect-12.2 P-28ESect-12.2 P-29ESect-12.2 P-30ESect-12.2 P-31ESect-12.2 P-32ESect-12.2 P-33ESect-12.2 P-34ESect-12.2 P-35ESect-12.2 P-36ESect-12.2 P-37ESect-12.2 P-38ESect-12.2 P-39ESect-12.2 P-40ESect-12.2 P-41ESect-12.2 P-42ESect-12.2 P-43ESect-12.2 P-44ESect-12.2 P-45ESect-12.2 P-46ESect-12.2 P-47ESect-12.2 P-48ESect-12.2 P-49ESect-12.2 P-50ESect-12.2 P-51ESect-12.2 P-52ESect-12.2 P-53ESect-12.2 P-54ESect-12.3 P-1CPSect-12.3 P-2CPSect-12.3 P-3CPSect-12.3 P-1ESect-12.3 P-2ESect-12.3 P-3ESect-12.3 P-4ESect-12.3 P-5ESect-12.3 P-6ESect-12.3 P-7ESect-12.3 P-8ESect-12.3 P-9ESect-12.3 P-10ESect-12.3 P-11ESect-12.3 P-12ESect-12.3 P-13ESect-12.3 P-14ESect-12.3 P-15ESect-12.3 P-16ESect-12.3 P-17ESect-12.3 P-18ESect-12.3 P-19ESect-12.3 P-20ESect-12.3 P-21ESect-12.3 P-22ESect-12.3 P-23ESect-12.3 P-24ESect-12.3 P-25ESect-12.3 P-26ESect-12.3 P-27ESect-12.3 P-28ESect-12.3 P-29ESect-12.3 P-30ESect-12.3 P-31ESect-12.3 P-32ESect-12.3 P-33ESect-12.3 P-34ESect-12.3 P-35ESect-12.3 P-36ESect-12.3 P-37ESect-12.3 P-38ESect-12.3 P-39ESect-12.3 P-40ESect-12.3 P-41ESect-12.3 P-42ESect-12.3 P-43ESect-12.3 P-44ESect-12.3 P-45ESect-12.3 P-46ESect-12.3 P-47ESect-12.3 P-48ESect-12.3 P-49ESect-12.3 P-50ESect-12.3 P-56ESect-12.4 P-1CPSect-12.4 P-2CPSect-12.4 P-3CPSect-12.4 P-4CPSect-12.4 P-1ESect-12.4 P-2ESect-12.4 P-3ESect-12.4 P-4ESect-12.4 P-5ESect-12.4 P-6ESect-12.4 P-7ESect-12.4 P-8ESect-12.4 P-9ESect-12.4 P-10ESect-12.4 P-11ESect-12.4 P-12ESect-12.4 P-13ESect-12.4 P-14ESect-12.4 P-15ESect-12.4 P-16ESect-12.4 P-17ESect-12.4 P-18ESect-12.4 P-19ESect-12.4 P-20ESect-12.4 P-21ESect-12.4 P-23ESect-12.4 P-24ESect-12.4 P-26ESect-12.5 P-1CPSect-12.5 P-2CPSect-12.5 P-3CPSect-12.5 P-1ESect-12.5 P-2ESect-12.5 P-3ESect-12.5 P-4ESect-12.5 P-5ESect-12.5 P-6ESect-12.5 P-7ESect-12.5 P-8ESect-12.5 P-9ESect-12.5 P-10ESect-12.5 P-11ESect-12.5 P-12ESect-12.5 P-13ESect-12.5 P-14ESect-12.5 P-15ESect-12.5 P-16ESect-12.5 P-17ESect-12.5 P-18ESect-12.5 P-19ESect-12.5 P-20ESect-12.5 P-21ESect-12.5 P-22ESect-12.5 P-23ESect-12.5 P-24ESect-12.5 P-25ESect-12.5 P-26ESect-12.5 P-27ESect-12.5 P-28ESect-12.5 P-29ESect-12.5 P-30ESect-12.5 P-31ESect-12.5 P-32ESect-12.5 P-33ESect-12.5 P-34ESect-12.5 P-35ESect-12.5 P-36ESect-12.5 P-37ESect-12.5 P-38ESect-12.5 P-39ESect-12.5 P-40ESect-12.5 P-41ESect-12.5 P-42ESect-12.5 P-43ESect-12.5 P-44ESect-12.5 P-45ESect-12.5 P-46ESect-12.5 P-47ESect-12.5 P-48ESect-12.5 P-49ESect-12.5 P-50ESect-12.5 P-51ESect-12.5 P-52ESect-12.5 P-53ESect-12.5 P-54ESect-12.5 P-55ESect-12.5 P-56ESect-12.5 P-57ESect-12.5 P-58ECh-12 P-1RECh-12 P-2RECh-12 P-3RECh-12 P-4RECh-12 P-5RECh-12 P-6RECh-12 P-7RECh-12 P-8RECh-12 P-9RECh-12 P-10RECh-12 P-11RECh-12 P-12RECh-12 P-13RECh-12 P-14RECh-12 P-15RECh-12 P-16RECh-12 P-17RECh-12 P-18RECh-12 P-19RECh-12 P-20RECh-12 P-21RECh-12 P-22RECh-12 P-23RECh-12 P-24RECh-12 P-25RECh-12 P-26RECh-12 P-27RECh-12 P-28RECh-12 P-29RECh-12 P-30RECh-12 P-31RECh-12 P-32RECh-12 P-33RECh-12 P-34RECh-12 P-35RECh-12 P-36RECh-12 P-37RECh-12 P-38RECh-12 P-39RECh-12 P-40RECh-12 P-41RECh-12 P-42RECh-12 P-43RECh-12 P-44RECh-12 P-45RECh-12 P-46RECh-12 P-47RECh-12 P-48RECh-12 P-49RECh-12 P-1TCh-12 P-2TCh-12 P-3TCh-12 P-4TCh-12 P-5TCh-12 P-6TCh-12 P-7TCh-12 P-8TCh-12 P-9TCh-12 P-10TCh-12 P-11TCh-12 P-12TCh-12 P-13TCh-12 P-14TCh-12 P-15TCh-12 P-16TCh-12 P-17TCh-12 P-18TCh-12 P-19TCh-12 P-20TCh-12 P-21TCh-12 P-22T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 49-62, find the indicated limit, if it exists. 62. limx24x22x2+x3

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Use the given graph of f to find a number such that if |x 1| then |f(x) 1| 0.2

Single Variable Calculus: Early Transcendentals, Volume I

Prove that if then.

Elements Of Modern Algebra

Proof If r(t) is a nonzero differentiable function of t, prove that ddt[r(t)]=r(t)r(t)r(t).

Calculus: Early Transcendental Functions (MindTap Course List)

The range of is: (−∞,∞) [0, ∞) (0, ∞) [1, ∞]

Study Guide for Stewart's Multivariable Calculus, 8th

The lamina at the right has center of mass (38,65) and uniform density . The moments about the x- and y-axes ar...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th