BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Evaluate the integrals in Problems 7-36. Check your results by differentiation.

9 x 5 ( 3 x 6 4 ) 6   d x  

To determine

To calculate: The value of the integral 9x5(3x64)6dx.

Explanation

Given Information:

The provided integral is 9x5(3x64)6dx

Formula used:

The power formula of integrals:

undu=un+1n+1+C (forn1)

The power rule of differentiation:

ddu(un)=nun1

Calculation:

Consider the provided integral:

9x5(3x64)6dx

Rewrite the integral by multiplying and dividing by 2 as:

1218x5(3x64)6dx

Let u=3x64, then derivative will be,

du=d(3x64)=18x5dx

Substitute du for 18x5dx and u for 3x64 in provided integration.

1218x5(3x64)6dx=12u6du

Now apply, the power formula of integrals:

undu

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 12 Solutions

Show all chapter solutions add
Sect-12.1 P-9ESect-12.1 P-10ESect-12.1 P-11ESect-12.1 P-12ESect-12.1 P-13ESect-12.1 P-14ESect-12.1 P-15ESect-12.1 P-16ESect-12.1 P-17ESect-12.1 P-18ESect-12.1 P-19ESect-12.1 P-20ESect-12.1 P-21ESect-12.1 P-22ESect-12.1 P-23ESect-12.1 P-24ESect-12.1 P-25ESect-12.1 P-26ESect-12.1 P-27ESect-12.1 P-28ESect-12.1 P-29ESect-12.1 P-30ESect-12.1 P-31ESect-12.1 P-32ESect-12.1 P-33ESect-12.1 P-34ESect-12.1 P-35ESect-12.1 P-36ESect-12.1 P-37ESect-12.1 P-38ESect-12.1 P-39ESect-12.1 P-40ESect-12.1 P-41ESect-12.1 P-42ESect-12.1 P-43ESect-12.1 P-44ESect-12.1 P-45ESect-12.1 P-46ESect-12.1 P-47ESect-12.1 P-48ESect-12.1 P-49ESect-12.1 P-50ESect-12.1 P-51ESect-12.1 P-52ESect-12.1 P-53ESect-12.1 P-54ESect-12.1 P-55ESect-12.1 P-56ESect-12.2 P-1CPSect-12.2 P-2CPSect-12.2 P-3CPSect-12.2 P-4CPSect-12.2 P-1ESect-12.2 P-2ESect-12.2 P-3ESect-12.2 P-4ESect-12.2 P-5ESect-12.2 P-6ESect-12.2 P-7ESect-12.2 P-8ESect-12.2 P-9ESect-12.2 P-10ESect-12.2 P-11ESect-12.2 P-12ESect-12.2 P-13ESect-12.2 P-14ESect-12.2 P-15ESect-12.2 P-16ESect-12.2 P-17ESect-12.2 P-18ESect-12.2 P-19ESect-12.2 P-20ESect-12.2 P-21ESect-12.2 P-22ESect-12.2 P-23ESect-12.2 P-24ESect-12.2 P-25ESect-12.2 P-26ESect-12.2 P-27ESect-12.2 P-28ESect-12.2 P-29ESect-12.2 P-30ESect-12.2 P-31ESect-12.2 P-32ESect-12.2 P-33ESect-12.2 P-34ESect-12.2 P-35ESect-12.2 P-36ESect-12.2 P-37ESect-12.2 P-38ESect-12.2 P-39ESect-12.2 P-40ESect-12.2 P-41ESect-12.2 P-42ESect-12.2 P-43ESect-12.2 P-44ESect-12.2 P-45ESect-12.2 P-46ESect-12.2 P-47ESect-12.2 P-48ESect-12.2 P-49ESect-12.2 P-50ESect-12.2 P-51ESect-12.2 P-52ESect-12.2 P-53ESect-12.2 P-54ESect-12.3 P-1CPSect-12.3 P-2CPSect-12.3 P-3CPSect-12.3 P-1ESect-12.3 P-2ESect-12.3 P-3ESect-12.3 P-4ESect-12.3 P-5ESect-12.3 P-6ESect-12.3 P-7ESect-12.3 P-8ESect-12.3 P-9ESect-12.3 P-10ESect-12.3 P-11ESect-12.3 P-12ESect-12.3 P-13ESect-12.3 P-14ESect-12.3 P-15ESect-12.3 P-16ESect-12.3 P-17ESect-12.3 P-18ESect-12.3 P-19ESect-12.3 P-20ESect-12.3 P-21ESect-12.3 P-22ESect-12.3 P-23ESect-12.3 P-24ESect-12.3 P-25ESect-12.3 P-26ESect-12.3 P-27ESect-12.3 P-28ESect-12.3 P-29ESect-12.3 P-30ESect-12.3 P-31ESect-12.3 P-32ESect-12.3 P-33ESect-12.3 P-34ESect-12.3 P-35ESect-12.3 P-36ESect-12.3 P-37ESect-12.3 P-38ESect-12.3 P-39ESect-12.3 P-40ESect-12.3 P-41ESect-12.3 P-42ESect-12.3 P-43ESect-12.3 P-44ESect-12.3 P-45ESect-12.3 P-46ESect-12.3 P-47ESect-12.3 P-48ESect-12.3 P-49ESect-12.3 P-50ESect-12.3 P-56ESect-12.4 P-1CPSect-12.4 P-2CPSect-12.4 P-3CPSect-12.4 P-4CPSect-12.4 P-1ESect-12.4 P-2ESect-12.4 P-3ESect-12.4 P-4ESect-12.4 P-5ESect-12.4 P-6ESect-12.4 P-7ESect-12.4 P-8ESect-12.4 P-9ESect-12.4 P-10ESect-12.4 P-11ESect-12.4 P-12ESect-12.4 P-13ESect-12.4 P-14ESect-12.4 P-15ESect-12.4 P-16ESect-12.4 P-17ESect-12.4 P-18ESect-12.4 P-19ESect-12.4 P-20ESect-12.4 P-21ESect-12.4 P-23ESect-12.4 P-24ESect-12.4 P-26ESect-12.5 P-1CPSect-12.5 P-2CPSect-12.5 P-3CPSect-12.5 P-1ESect-12.5 P-2ESect-12.5 P-3ESect-12.5 P-4ESect-12.5 P-5ESect-12.5 P-6ESect-12.5 P-7ESect-12.5 P-8ESect-12.5 P-9ESect-12.5 P-10ESect-12.5 P-11ESect-12.5 P-12ESect-12.5 P-13ESect-12.5 P-14ESect-12.5 P-15ESect-12.5 P-16ESect-12.5 P-17ESect-12.5 P-18ESect-12.5 P-19ESect-12.5 P-20ESect-12.5 P-21ESect-12.5 P-22ESect-12.5 P-23ESect-12.5 P-24ESect-12.5 P-25ESect-12.5 P-26ESect-12.5 P-27ESect-12.5 P-28ESect-12.5 P-29ESect-12.5 P-30ESect-12.5 P-31ESect-12.5 P-32ESect-12.5 P-33ESect-12.5 P-34ESect-12.5 P-35ESect-12.5 P-36ESect-12.5 P-37ESect-12.5 P-38ESect-12.5 P-39ESect-12.5 P-40ESect-12.5 P-41ESect-12.5 P-42ESect-12.5 P-43ESect-12.5 P-44ESect-12.5 P-45ESect-12.5 P-46ESect-12.5 P-47ESect-12.5 P-48ESect-12.5 P-49ESect-12.5 P-50ESect-12.5 P-51ESect-12.5 P-52ESect-12.5 P-53ESect-12.5 P-54ESect-12.5 P-55ESect-12.5 P-56ESect-12.5 P-57ESect-12.5 P-58ECh-12 P-1RECh-12 P-2RECh-12 P-3RECh-12 P-4RECh-12 P-5RECh-12 P-6RECh-12 P-7RECh-12 P-8RECh-12 P-9RECh-12 P-10RECh-12 P-11RECh-12 P-12RECh-12 P-13RECh-12 P-14RECh-12 P-15RECh-12 P-16RECh-12 P-17RECh-12 P-18RECh-12 P-19RECh-12 P-20RECh-12 P-21RECh-12 P-22RECh-12 P-23RECh-12 P-24RECh-12 P-25RECh-12 P-26RECh-12 P-27RECh-12 P-28RECh-12 P-29RECh-12 P-30RECh-12 P-31RECh-12 P-32RECh-12 P-33RECh-12 P-34RECh-12 P-35RECh-12 P-36RECh-12 P-37RECh-12 P-38RECh-12 P-39RECh-12 P-40RECh-12 P-41RECh-12 P-42RECh-12 P-43RECh-12 P-44RECh-12 P-45RECh-12 P-46RECh-12 P-47RECh-12 P-48RECh-12 P-49RECh-12 P-1TCh-12 P-2TCh-12 P-3TCh-12 P-4TCh-12 P-5TCh-12 P-6TCh-12 P-7TCh-12 P-8TCh-12 P-9TCh-12 P-10TCh-12 P-11TCh-12 P-12TCh-12 P-13TCh-12 P-14TCh-12 P-15TCh-12 P-16TCh-12 P-17TCh-12 P-18TCh-12 P-19TCh-12 P-20TCh-12 P-21TCh-12 P-22T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Differentiate. y=x2tanx

Single Variable Calculus: Early Transcendentals, Volume I

Evaluate the expression sin Exercises 116. 323

Finite Mathematics and Applied Calculus (MindTap Course List)

In Exercises 75-98, perform the indicated operations and/or simplify each expression. 80. 3x2 {x2+ 1 x[x (2x ...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

What does the Squeeze Theorem say?

Single Variable Calculus

Evaluate each expression: 52+3[ 2(53)+4(4+2)3 ]

Elementary Technical Mathematics

Find the derivative of the function. f(t)2t3

Single Variable Calculus: Early Transcendentals

If sin=725, find cos and sec.

Elementary Geometry for College Students

Which is greater (n)n+1 or (n+1)n where n8?

Calculus of a Single Variable

What is the integrating factor for xy′ + 6x2y = 10 − x3?

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

True or False:

Study Guide for Stewart's Multivariable Calculus, 8th