BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193

Solutions

Chapter
Section
BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193
Textbook Problem
1 views

Prove property (12.3.3).

To determine

To prove:

That there mutually disjoint subsets in the set of states in a finite-state automaton partitioned by the k equivalence classes.

Explanation

Given information:

For a finite-state automaton, there are k equivalence classes for each integer k0.

Proof:

Let A be finite state automaton that has a set of states S. Suppose s and t are two states of S.

If s is k equivalent to t, sRkt then the eventual function Nk for an input string w that the length is less than or equal k.

Nk(s,w)Nk(t,w)

If Nk(s,w) is a nonaccepting state Nk(t,w) is also a nonaccepting state

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 12 Solutions

Show all chapter solutions add
Sect-12.1 P-11TYSect-12.1 P-12TYSect-12.1 P-1ESSect-12.1 P-2ESSect-12.1 P-3ESSect-12.1 P-4ESSect-12.1 P-5ESSect-12.1 P-6ESSect-12.1 P-7ESSect-12.1 P-8ESSect-12.1 P-9ESSect-12.1 P-10ESSect-12.1 P-11ESSect-12.1 P-12ESSect-12.1 P-13ESSect-12.1 P-14ESSect-12.1 P-15ESSect-12.1 P-16ESSect-12.1 P-17ESSect-12.1 P-18ESSect-12.1 P-19ESSect-12.1 P-20ESSect-12.1 P-21ESSect-12.1 P-22ESSect-12.1 P-23ESSect-12.1 P-24ESSect-12.1 P-25ESSect-12.1 P-26ESSect-12.1 P-27ESSect-12.1 P-28ESSect-12.1 P-29ESSect-12.1 P-30ESSect-12.1 P-31ESSect-12.1 P-32ESSect-12.1 P-33ESSect-12.1 P-34ESSect-12.1 P-35ESSect-12.1 P-36ESSect-12.1 P-37ESSect-12.1 P-38ESSect-12.1 P-39ESSect-12.1 P-40ESSect-12.1 P-41ESSect-12.2 P-1TYSect-12.2 P-2TYSect-12.2 P-3TYSect-12.2 P-4TYSect-12.2 P-5TYSect-12.2 P-6TYSect-12.2 P-7TYSect-12.2 P-8TYSect-12.2 P-9TYSect-12.2 P-10TYSect-12.2 P-1ESSect-12.2 P-2ESSect-12.2 P-3ESSect-12.2 P-4ESSect-12.2 P-5ESSect-12.2 P-6ESSect-12.2 P-7ESSect-12.2 P-8ESSect-12.2 P-9ESSect-12.2 P-10ESSect-12.2 P-11ESSect-12.2 P-12ESSect-12.2 P-13ESSect-12.2 P-14ESSect-12.2 P-15ESSect-12.2 P-16ESSect-12.2 P-17ESSect-12.2 P-18ESSect-12.2 P-19ESSect-12.2 P-20ESSect-12.2 P-21ESSect-12.2 P-22ESSect-12.2 P-23ESSect-12.2 P-24ESSect-12.2 P-25ESSect-12.2 P-26ESSect-12.2 P-27ESSect-12.2 P-28ESSect-12.2 P-29ESSect-12.2 P-30ESSect-12.2 P-31ESSect-12.2 P-32ESSect-12.2 P-33ESSect-12.2 P-34ESSect-12.2 P-35ESSect-12.2 P-36ESSect-12.2 P-37ESSect-12.2 P-38ESSect-12.2 P-39ESSect-12.2 P-40ESSect-12.2 P-41ESSect-12.2 P-42ESSect-12.2 P-43ESSect-12.2 P-44ESSect-12.2 P-45ESSect-12.2 P-46ESSect-12.2 P-47ESSect-12.2 P-48ESSect-12.2 P-49ESSect-12.2 P-50ESSect-12.2 P-51ESSect-12.2 P-52ESSect-12.2 P-53ESSect-12.2 P-54ESSect-12.3 P-1TYSect-12.3 P-2TYSect-12.3 P-3TYSect-12.3 P-4TYSect-12.3 P-5TYSect-12.3 P-1ESSect-12.3 P-2ESSect-12.3 P-3ESSect-12.3 P-4ESSect-12.3 P-5ESSect-12.3 P-6ESSect-12.3 P-7ESSect-12.3 P-8ESSect-12.3 P-9ESSect-12.3 P-10ESSect-12.3 P-11ESSect-12.3 P-12ESSect-12.3 P-13ESSect-12.3 P-14ESSect-12.3 P-15ESSect-12.3 P-16ESSect-12.3 P-17ESSect-12.3 P-18ES