BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193

Solutions

Chapter
Section
BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193
Textbook Problem
1 views

Prove that if two states of a finite-state automaton are k-equivalent for some integer k, then those states are m-equivalent for every nonnegative integer m < k .

To determine

To prove:

That k equivalent two state of a finite-state automaton are m equivalent for every nonnegative integer m<k.

Explanation

Given information:

the constants k and m are nonnegative integers.

Proof:

Let A be a finite-state automaton which has s and t as k equivalent states. The next-state function is considered as N.

When we assign an input string w which is the length of w is less than or equal k for the states s and t, then both states N*(s,w) and N*(t,w) are accepting or both states are nonaccepting

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 12 Solutions

Show all chapter solutions add
Sect-12.1 P-11TYSect-12.1 P-12TYSect-12.1 P-1ESSect-12.1 P-2ESSect-12.1 P-3ESSect-12.1 P-4ESSect-12.1 P-5ESSect-12.1 P-6ESSect-12.1 P-7ESSect-12.1 P-8ESSect-12.1 P-9ESSect-12.1 P-10ESSect-12.1 P-11ESSect-12.1 P-12ESSect-12.1 P-13ESSect-12.1 P-14ESSect-12.1 P-15ESSect-12.1 P-16ESSect-12.1 P-17ESSect-12.1 P-18ESSect-12.1 P-19ESSect-12.1 P-20ESSect-12.1 P-21ESSect-12.1 P-22ESSect-12.1 P-23ESSect-12.1 P-24ESSect-12.1 P-25ESSect-12.1 P-26ESSect-12.1 P-27ESSect-12.1 P-28ESSect-12.1 P-29ESSect-12.1 P-30ESSect-12.1 P-31ESSect-12.1 P-32ESSect-12.1 P-33ESSect-12.1 P-34ESSect-12.1 P-35ESSect-12.1 P-36ESSect-12.1 P-37ESSect-12.1 P-38ESSect-12.1 P-39ESSect-12.1 P-40ESSect-12.1 P-41ESSect-12.2 P-1TYSect-12.2 P-2TYSect-12.2 P-3TYSect-12.2 P-4TYSect-12.2 P-5TYSect-12.2 P-6TYSect-12.2 P-7TYSect-12.2 P-8TYSect-12.2 P-9TYSect-12.2 P-10TYSect-12.2 P-1ESSect-12.2 P-2ESSect-12.2 P-3ESSect-12.2 P-4ESSect-12.2 P-5ESSect-12.2 P-6ESSect-12.2 P-7ESSect-12.2 P-8ESSect-12.2 P-9ESSect-12.2 P-10ESSect-12.2 P-11ESSect-12.2 P-12ESSect-12.2 P-13ESSect-12.2 P-14ESSect-12.2 P-15ESSect-12.2 P-16ESSect-12.2 P-17ESSect-12.2 P-18ESSect-12.2 P-19ESSect-12.2 P-20ESSect-12.2 P-21ESSect-12.2 P-22ESSect-12.2 P-23ESSect-12.2 P-24ESSect-12.2 P-25ESSect-12.2 P-26ESSect-12.2 P-27ESSect-12.2 P-28ESSect-12.2 P-29ESSect-12.2 P-30ESSect-12.2 P-31ESSect-12.2 P-32ESSect-12.2 P-33ESSect-12.2 P-34ESSect-12.2 P-35ESSect-12.2 P-36ESSect-12.2 P-37ESSect-12.2 P-38ESSect-12.2 P-39ESSect-12.2 P-40ESSect-12.2 P-41ESSect-12.2 P-42ESSect-12.2 P-43ESSect-12.2 P-44ESSect-12.2 P-45ESSect-12.2 P-46ESSect-12.2 P-47ESSect-12.2 P-48ESSect-12.2 P-49ESSect-12.2 P-50ESSect-12.2 P-51ESSect-12.2 P-52ESSect-12.2 P-53ESSect-12.2 P-54ESSect-12.3 P-1TYSect-12.3 P-2TYSect-12.3 P-3TYSect-12.3 P-4TYSect-12.3 P-5TYSect-12.3 P-1ESSect-12.3 P-2ESSect-12.3 P-3ESSect-12.3 P-4ESSect-12.3 P-5ESSect-12.3 P-6ESSect-12.3 P-7ESSect-12.3 P-8ESSect-12.3 P-9ESSect-12.3 P-10ESSect-12.3 P-11ESSect-12.3 P-12ESSect-12.3 P-13ESSect-12.3 P-14ESSect-12.3 P-15ESSect-12.3 P-16ESSect-12.3 P-17ESSect-12.3 P-18ES