Chemistry: Atoms First
Chemistry: Atoms First
3rd Edition
ISBN: 9781259638138
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 13.106QP

What masses of sodium chloride, magnesium chloride, sodium sulfate, calcium chloride, potassium chloride, and sodium bicarbonate are needed to produce 1 L of artificial seawater for an aquarium? The required ionic concentrations are (Na+) = 2.56 M, (K+] = 0.0090 M, [Mg2+] = 0.054 M, [Ca2+] = 0.010 M, [HCO3] = 0.0020 M, [Cl] = 2.60 M, [SO42-] = 0.051 M.

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

Masses of Sodium chloride, Potassium chloride, Sodium sulphate, Calcium chloride, Magnesium chloride and Sodium bicarbonate are required to produce 1L of artificial sea water has to be calculated.

Concept introduction:

Mass is the determination of the quantity of the matter in an object. Unit of mass is gram (g) or kilogram (kg). Mass is calculated by multiplying the volume of the compound into its density.

Answer to Problem 13.106QP

Amount of given salts to produce artificial sea water are,

Chemistry: Atoms First, Chapter 13, Problem 13.106QP , additional homework tip  1

Explanation of Solution

Given data

Required ionic concentrations are,

[Na+] = 2.56M[K+] = 0.0090M[Mg2+] = 0.054M[Ca2+] = 0.010M[HCO3] = 0.0020M[Cl-]=2.60M[SO42-]= 0.051M

To calculate the calculation of all ions

MgCl2;If[MgCl2]=0.054 M[Mg2+]= 0.054 M[Cl-]= 2× 0.054MNa2SO4;If[Na2SO4]=0.051 M[Na2+]= 0.051 M[Cl-]= 2× 0.051M[SO42-]=0.051MCaCl2:If[CaCl2]= 0.010M[Ca2+]= 0.010[Cl-]= 2× 0.010MNaHCO3;If[NaHCO3]=0.0020M[Na+]= 0.0020 M[HCO3-]= 0.0020M

Chemistry: Atoms First, Chapter 13, Problem 13.106QP , additional homework tip  2

To calculate subtotal of sodium and chloride ion

  • The subtotal of chloride ion

[Cl-]= (2×0.0540) + (2×0.0090) = 0.137M

Since the required concentration of chloride ion is 2.60M, so the difference is,

2.6 - 0.137 = 2.46 M Should comes from NaCl.

  • The subtotal of Sodium ion

[Na+]= (2×0.051) + (2×0.0020) = 0.104M

Since the required concentration of Sodium ion is 2.56M, so the difference is,

2.56 - 0.104 = 2.46 M Should comes from NaCl.

By adding the sodium and chloride ions concentration, the subtotal respective ions have calculated.

To calculate mass of the compounds required

NaCl;          Molecular mass of NaCl=58.44g/mol2.46 mol × 58.44g1mol=144g

MgCl2;                 molecular mass of MgCl2=95.21g/mol0.054 mol × 95.21g1mol=5.1g

Na2SO4;         molecular mass of Na2SO4=142.1g/mol0.051 mol × 142.1g1mol=7.2g

CaCl2;            molecular mass of CaCl2=111.0g/mol0.010 mol × 111.0g1mol=1.1g

KCl ;               molecular mass of KCl=74.55g/mol0.0090 mol × 74.55g1mol=0.67g

NaHCO3;       molecular mass of NaHCO3=84.01g/mol0.0020 mol × 84.01g1mol= 0.17g

By plugging in the value of mass of the given compounds and number of moles of the compound, the mass required to produce 1L of artificial sea water has calculated.

Conclusion

Masses of Sodium chloride, Potassium chloride, Sodium sulphate, Calcium chloride, Magnesium chloride and Sodium bicarbonate are required to produce 1L of artificial sea water has been calculated.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 13 Solutions

Chemistry: Atoms First

Ch. 13.3 - Prob. 3PPBCh. 13.3 - Prob. 3PPCCh. 13.3 - Prob. 13.3.1SRCh. 13.3 - Prob. 13.3.2SRCh. 13.3 - Prob. 13.3.3SRCh. 13.3 - At 25.0C, an aqueous solution that is 25.0 percent...Ch. 13.4 - Calculate the concentration of carbon dioxide in a...Ch. 13.4 - Calculate the concentration of CO2 in water at 25C...Ch. 13.4 - Prob. 4PPBCh. 13.4 - Prob. 4PPCCh. 13.4 - Prob. 13.4.1SRCh. 13.4 - Prob. 13.4.2SRCh. 13.5 - Prob. 13.5WECh. 13.5 - Calculate the vapor pressure of a solution made by...Ch. 13.5 - Calculate the mass of urea that should be...Ch. 13.5 - The diagrams [(i)(iv)] represent four closed...Ch. 13.5 - Ethylene glycol [CH2(OH)CH2(OH)] is a common...Ch. 13.5 - Prob. 6PPACh. 13.5 - What mass of ethylene glycol must be added to 1525...Ch. 13.5 - Prob. 6PPCCh. 13.5 - Prob. 13.7WECh. 13.5 - Prob. 7PPACh. 13.5 - Prob. 7PPBCh. 13.5 - A solution contains 75.0 g of glucose (molar mass...Ch. 13.5 - Prob. 13.5.2SRCh. 13.5 - Prob. 13.5.3SRCh. 13.5 - A 1.00-m solution of HC1 has a freezing point of...Ch. 13.6 - Quinine was the first drug widely used to treat...Ch. 13.6 - Prob. 8PPACh. 13.6 - Prob. 8PPBCh. 13.6 - Prob. 8PPCCh. 13.6 - Prob. 13.9WECh. 13.6 - A solution made by dissolving 25 mg of insulin in...Ch. 13.6 - What mass of insulin must be dissolved in 50.0 mL...Ch. 13.6 - The first diagram represents one aqueous solution...Ch. 13.6 - Prob. 13.10WECh. 13.6 - An aqueous solution that is 0.0100 M in acetic...Ch. 13.6 - Prob. 10PPBCh. 13.6 - Prob. 10PPCCh. 13.6 - Prob. 13.6.1SRCh. 13.6 - A 0.010-M solution of the weak electrolyte HA has...Ch. 13 - Which of the following processes is accompanied by...Ch. 13 - For each of the processes depicted here, determine...Ch. 13 - For each of the processes depicted here, determine...Ch. 13 - Prob. 13.4KSPCh. 13 - Prob. 13.1QPCh. 13 - Prob. 13.2QPCh. 13 - Prob. 13.3QPCh. 13 - Prob. 13.4QPCh. 13 - Prob. 13.5QPCh. 13 - Prob. 13.6QPCh. 13 - Explain why dissolving a solid almost always leads...Ch. 13 - Describe the factors that affect the solubility of...Ch. 13 - Prob. 13.9QPCh. 13 - Prob. 13.10QPCh. 13 - Arrange the following compounds in order of...Ch. 13 - Prob. 13.12QPCh. 13 - Prob. 13.13QPCh. 13 - Prob. 13.14QPCh. 13 - Prob. 13.15QPCh. 13 - Calculate the amount of water (in crams) that must...Ch. 13 - Calculate the molality of each of the following...Ch. 13 - Prob. 13.18QPCh. 13 - Calculate the molalities of the following aqueous...Ch. 13 - For dilute aqueous solutions in which the density...Ch. 13 - Prob. 13.21QPCh. 13 - PepsiCo, maker of Pepsi, announced in April 2015...Ch. 13 - After sales of new Diet Pepsi proved...Ch. 13 - The density of an aqueous solution containing 25.0...Ch. 13 - Prob. 13.25QPCh. 13 - Discuss the factors that influence the solubility...Ch. 13 - What is thermal pollution? Why is it harmful to...Ch. 13 - Prob. 13.28QPCh. 13 - A student is observing two beakers of water. One...Ch. 13 - A man bought a goldfish in a pet shop. Upon...Ch. 13 - The solubility of KNO3 is 155 g per 100 g of water...Ch. 13 - A 3.20-g sample of a salt dissolves in 9.10 g of...Ch. 13 - The solubility of CO2 in water at 25C and 1 atm is...Ch. 13 - Prob. 13.34QPCh. 13 - Fish breathe the dissolved air in water through...Ch. 13 - The solubility of N2 in blood at 37C and at a...Ch. 13 - The difference between water-soluble and...Ch. 13 - Predict whether each vitamin will be water soluble...Ch. 13 - Prob. 13.39QPCh. 13 - The first diagram represents an open system with...Ch. 13 - The diagrams represent an aqueous solution at two...Ch. 13 - Prob. 13.42QPCh. 13 - Prob. 13.43QPCh. 13 - Write the equation representing Raoults law, and...Ch. 13 - Prob. 13.45QPCh. 13 - Write the equations relating boiling-point...Ch. 13 - Prob. 13.47QPCh. 13 - Prob. 13.48QPCh. 13 - What is osmosis? What is a semipermeable membrane?Ch. 13 - Prob. 13.50QPCh. 13 - Prob. 13.51QPCh. 13 - Prob. 13.52QPCh. 13 - What are ion pairs? What effect does ion-pair...Ch. 13 - Prob. 13.54QPCh. 13 - Prob. 13.55QPCh. 13 - Prob. 13.56QPCh. 13 - Prob. 13.57QPCh. 13 - The vapor pressure of benzene is 100.0 mmHg at...Ch. 13 - The vapor pressures of ethanol (C2H5OH) and...Ch. 13 - The vapor pressure of ethanol (C2H5OH) at 20C is...Ch. 13 - Prob. 13.61QPCh. 13 - What arc the boiling point and freezing point of a...Ch. 13 - Prob. 13.63QPCh. 13 - How many liters of the antifreeze ethylene glycol...Ch. 13 - Prob. 13.65QPCh. 13 - Prob. 13.66QPCh. 13 - What are the normal freezing points and boiling...Ch. 13 - At 25C, the vapor pressure of pure water is 23.76...Ch. 13 - Both NaCl and CaCl2 are used to melt ice on roads...Ch. 13 - A 0.86 percent by mass solution of NaCl is called...Ch. 13 - Prob. 13.71QPCh. 13 - Calculate the osmotic pressure of a 0.0500 M MgSO4...Ch. 13 - The tallest trees known are the redwoods in...Ch. 13 - Calculate the difference in osmotic pressure (in...Ch. 13 - Prob. 13.75QPCh. 13 - Consider two aqueous solutions, one of sucrose...Ch. 13 - Arrange the following solutions in order of...Ch. 13 - Prob. 13.78QPCh. 13 - Indicate which compound in each of the following...Ch. 13 - Describe how you would use freezing-point...Ch. 13 - Prob. 13.81QPCh. 13 - The elemental analysis of an organic solid...Ch. 13 - A solution of 2.50 g of a compound having the...Ch. 13 - The molar mass of benzoic acid (C6H5COOH)...Ch. 13 - A solution containing 0.8330 g of a polymer of...Ch. 13 - Prob. 13.86QPCh. 13 - A solution of 6.S5 g of a carbohydrate m 100.0 g...Ch. 13 - A 0.036-M aqueous nitrous acid (HNO2) solution has...Ch. 13 - Prob. 13.89QPCh. 13 - Prob. 13.90QPCh. 13 - Prob. 13.91QPCh. 13 - Prob. 13.92QPCh. 13 - Prob. 13.93QPCh. 13 - Lysozyme is an enzyme that cleaves bacterial cell...Ch. 13 - The blood sugar (glucose) level of a diabetic...Ch. 13 - Trees in cold climates may be subjected to...Ch. 13 - Prob. 13.97QPCh. 13 - Two liquids A and B have vapor pressures of 76 and...Ch. 13 - Determine the van't Hoff factor of Na3PO4 in a...Ch. 13 - Prob. 13.100QPCh. 13 - Consider the three mercury manometers shown in the...Ch. 13 - A forensic chemist is given a white powder for...Ch. 13 - Prob. 13.103QPCh. 13 - A solution of 1.00 g of anhydrous aluminum...Ch. 13 - Explain why reverse osmosis is (theoretically)...Ch. 13 - What masses of sodium chloride, magnesium...Ch. 13 - The osmotic pressure of blood plasma is...Ch. 13 - Prob. 13.108QPCh. 13 - A protein has been isolated as a salt with the...Ch. 13 - A nonvolatile organic compound Z was used to make...Ch. 13 - Prob. 13.111QPCh. 13 - State which of the alcohols listed in Problem...Ch. 13 - Before a carbonated beverage bottle is sealed, it...Ch. 13 - Iodine (I2) is only sparingly soluble in water...Ch. 13 - (a) The root cells of plants contain a solution...Ch. 13 - Hemoglobin, the oxygen-transport protein, binds...Ch. 13 - Prob. 13.117QPCh. 13 - In the apparatus shown, what will happen if the...Ch. 13 - Concentrated hydrochloric acid is usually...Ch. 13 - Explain each of the following statements: (a) The...Ch. 13 - Prob. 13.121QPCh. 13 - A 1.32-g sample of a mixture of cyclohexane...Ch. 13 - How does each of the following affect the...Ch. 13 - A solution contains two volatile liquids A and B....Ch. 13 - Prob. 13.125QPCh. 13 - A mixture of ethanol and 1-propanol behaves...Ch. 13 - Ammonia (NH3) is very soluble in water, but...Ch. 13 - For ideal solutions, the volumes are additive....Ch. 13 - Acetic acid is a weak acid that ionizes in...Ch. 13 - Which vitamins (sec the given structures) do you...Ch. 13 - Calculate the percent by mass of the solute in...Ch. 13 - Acetic acid is a polar molecule and can form...Ch. 13 - Prob. 13.133QPCh. 13 - Fish in the Antarctic Ocean swim in water at about...Ch. 13 - Why are ice cubes (e.g., those you see in the...Ch. 13 - Prob. 13.136QPCh. 13 - Two beakers are placed in a closed container...Ch. 13 - (a) Derive the equation relating the molality (m)...Ch. 13 - At 27C, the vapor pressure of pure water is 23.76...Ch. 13 - A very long pipe is capped at one end with a...Ch. 13 - A mixture of liquids A and B exhibits ideal...Ch. 13 - Use Henrys law and the ideal gas equation to prove...Ch. 13 - Prob. 13.143QPCh. 13 - Prob. 13.144QPCh. 13 - The diagram here shows vapor pressure curves for...Ch. 13 - Valinomycin is an antibiotic. It functions by...Ch. 13 - Prob. 13.147QPCh. 13 - Prob. 13.148QPCh. 13 - Prob. 13.149QPCh. 13 - Explain why we cannot use osmotic pressure to...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
  • Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry: Matter and Change
    Chemistry
    ISBN:9780078746376
    Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
    Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY