MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, SI Edition, 9th Edition, [Instant Access], 1 term (6 months)
MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, SI Edition, 9th Edition, [Instant Access], 1 term (6 months)
9th Edition
ISBN: 9781305971226
Author: Braja M. Das; Khaled Sobhan
Publisher: Cengage Learning US
Question
Book Icon
Chapter 13, Problem 13.24P

a)

To determine

Draw the variation of Rankine’s active pressure on the wall with depth.

b)

To determine

Find the depth zo where the tensile crack can occur.

c)

To determine

Find the total active force Pa per unit length of the wall before the crack occurs.

d)

To determine

Find the total active force Pa per unit length of the wall after the tensile crack occurs and also find the location of the resultant.

Blurred answer
Students have asked these similar questions
Answer d and e
A fixed retaining wall is backfilled to height of 10m with dry cohesionless sand. The resulting backfill has a unit weight of 18kN/m³ and a drained angle of internal friction of 36°. a. Prior to backfilling, what is the horizontal stress (kPa) at a depth of 10m below the final elevation of the finished backfill? b. Assuming that the overconsolidation ratio of the soil in the backfill at a depth 10m below the surface is equal to 2.0, what is the corresponding effective horizontal stress at a depth of 10m below the top of the backfill? c. If a 200kN/m² surcharge is then applied to the surface of the backfill in the previous item (b), what will be the effective horizontals stress (kPa) at a depth of 10m below the top of the backfill? d. If the surcharge in the previous item (c) is reduced to 25kPa, what will be the effective horizontal stress at a depth of 10m below the top of the backfill? e. If the surcharge in the previous item (d) is increased to 100kPa, what will be the effective…
Determine the stability of the cantilever gravity retaining wall shown in figure below. The existing soil is a clay and the backfill is a coarse-grained soil. The base of the wall will rest on a 50-mm-thick, compacted layer of the backfill. The interface friction between the base and the compacted layer of backfill is 25.0°. Groundwater level is 8 m below the base. 1.0 m Batter 1:20 0.4 m 1.8 m 9, = 20 kPa 8⁰ Ysat = 18 kN/m³ cs = 25° 8 = 15⁰ Backfill Drainage blanket Y = 23.5 kN/m³ 3 m Existing soil 6.1 m 0.9 mi Ysat = 19 kN/m³ = 35° % = 25°
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning