General, Organic, and Biological Chemistry
General, Organic, and Biological Chemistry
7th Edition
ISBN: 9781285853918
Author: H. Stephen Stoker
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 13.28EP

How many hydrogen atoms are present in a molecule of each of the compounds in Problem 13-26?

  1. a. 2-methylcyclopentene
  2. b. 1,3-cyclopentadiene
  3. c. 2,3-dimethylpentane
  4. d. 1-ethyl-2-methylcyclohexene

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The total number of hydrogen atoms present in the given molecule has to be identified.

Concept Introduction:

Organic compounds are the important basis of life.  They include gasoline, coal, dyes, and clothing fibers etc.  The compounds that are obtained from living organisms are termed as organic compounds and those obtained from the earth are known as inorganic compounds.  Organic compounds are found in earth also apart from living organisms.  All the organic compounds contain the element carbon.  Urea was synthesized in the laboratory which is an organic compound.

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Alkanes are a class of saturated hydrocarbons that do not contain a ring of carbon atoms but a chain of carbon atoms with carbon‑carbon single bonds.  The general molecular formula for alkanes is CnH2n+2.  “n” is the number of carbon atoms present.  Some of the basic examples of alkanes are methane (CH4), ethane (C2H6).  Cycloalkanes have the general molecular formula as CnH2n.

Alkenes and cycloalkenes are a class of unsaturated hydrocarbons that contain at least one double bond in its structure.  The general molecular formula for alkene with one double bond is CnH2n.  Alkene with two double bonds have the general molecular formula as CnH2n-2.  Cycloalkenes with one double bond have the general molecular formula as CnH2n-2.  Cycloalkenes with two double bonds have the general molecular formula as CnH2n-4.

Answer to Problem 13.28EP

The total number of hydrogen atoms present is 10.

Explanation of Solution

Cycloalkenes are unsaturated hydrocarbons that contain at least one double bond between carbon atoms with ring structure.  The general molecular formula for cycloalkene with one double bond is CnH2n-2.  Structure of 2-methylcyclopentene can be drawn as,

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.28EP , additional homework tip  1

Carbon atoms are present at the intersection and at the end points.  The above structure has five intersections and one end point.  Therefore, there is a total of six carbon atoms.  The total number of hydrogen atoms can be found by substituting in the general molecular formula as shown below,

  CnH2n-2C6H(2*6)2C6H10

The total number of hydrogen atoms that will be present in the given cycloalkene is found to be ten.

Conclusion

The total number of hydrogen atoms present in the molecule is ten.

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The total number of hydrogen atoms present in the given molecule has to be identified.

Concept Introduction:

Organic compounds are the important basis of life.  They include gasoline, coal, dyes, and clothing fibers etc.  The compounds that are obtained from living organisms are termed as organic compounds and those obtained from the earth are known as inorganic compounds.  Organic compounds are found in earth also apart from living organisms.  All the organic compounds contain the element carbon.  Urea was synthesized in the laboratory which is an organic compound.

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Alkanes are a class of saturated hydrocarbons that do not contain a ring of carbon atoms but a chain of carbon atoms with carbon‑carbon single bonds.  The general molecular formula for alkanes is CnH2n+2.  “n” is the number of carbon atoms present.  Some of the basic examples of alkanes are methane (CH4), ethane (C2H6).  Cycloalkanes have the general molecular formula as CnH2n.

Alkenes and cycloalkenes are a class of unsaturated hydrocarbons that contain at least one double bond in its structure.  The general molecular formula for alkene with one double bond is CnH2n.  Alkene with two double bonds have the general molecular formula as CnH2n-2.  Cycloalkenes with one double bond have the general molecular formula as CnH2n-2.  Cycloalkenes with two double bonds have the general molecular formula as CnH2n-4.

Answer to Problem 13.28EP

The total number of hydrogen atoms present is 6.

Explanation of Solution

Cycloalkenes are unsaturated hydrocarbons that contain at least one double bond between carbon atoms with a ring structure.  The general molecular formula for cycloalkene with two double bond is CnH2n-4.  Structure of 1,3-cyclopentadiene can be drawn as,

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.28EP , additional homework tip  2

Carbon atoms are present at the intersection and at the end points.  The above structure has five intersections and no end points.  Therefore, there is a total of five carbon atoms.  The total number of hydrogen atoms can be found by substituting in the general molecular formula as shown below,

  CnH2n-4C5H(2*4)4C5H6

The total number of hydrogen atoms that will be present in the given cycloalkene is found to be six.

Conclusion

The total number of hydrogen atoms present in the molecule is six.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The total number of hydrogen atoms present in the given molecule has to be identified.

Concept Introduction:

Organic compounds are the important basis of life.  They include gasoline, coal, dyes, and clothing fibers etc.  The compounds that are obtained from living organisms are termed as organic compounds and those obtained from the earth are known as inorganic compounds.  Organic compounds are found in earth also apart from living organisms.  All the organic compounds contain the element carbon.  Urea was synthesized in the laboratory which is an organic compound.

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Alkanes are a class of saturated hydrocarbons that do not contain a ring of carbon atoms but a chain of carbon atoms with carbon‑carbon single bonds.  The general molecular formula for alkanes is CnH2n+2.  “n” is the number of carbon atoms present.  Some of the basic examples of alkanes are methane (CH4), ethane (C2H6).  Cycloalkanes have the general molecular formula as CnH2n.

Alkenes and cycloalkenes are a class of unsaturated hydrocarbons that contain at least one double bond in its structure.  The general molecular formula for alkene with one double bond is CnH2n.  Alkene with two double bonds have the general molecular formula as CnH2n-2.  Cycloalkenes with one double bond have the general molecular formula as CnH2n-2.  Cycloalkenes with two double bonds have the general molecular formula as CnH2n-4.

Answer to Problem 13.28EP

The total number of hydrogen atoms present is 16.

Explanation of Solution

Alkanes are saturated hydrocarbons that contain only single bonds between carbon atoms with no ring structure.  The general molecular formula for alkane is CnH2n+2.  Structure of 2,3-dimethylpentane can be drawn as,

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.28EP , additional homework tip  3

Carbon atoms are present at the intersection and at the end points.  The above structure has three intersections and four end points.  Therefore, there is a total of seven carbon atoms.  The total number of hydrogen atoms can be found by substituting in the general molecular formula as shown below,

  CnH2n+2C7H(2*7)+2C7H16

The total number of hydrogen atoms that will be present in the given alkane is found to be sixteen.

Conclusion

The total number of hydrogen atoms present in the molecule is sixteen.

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The total number of hydrogen atoms present in the given molecule has to be identified.

Concept Introduction:

Organic compounds are the important basis of life.  They include gasoline, coal, dyes, and clothing fibers etc.  The compounds that are obtained from living organisms are termed as organic compounds and those obtained from the earth are known as inorganic compounds.  Organic compounds are found in earth also apart from living organisms.  All the organic compounds contain the element carbon.  Urea was synthesized in the laboratory which is an organic compound.

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Alkanes are a class of saturated hydrocarbons that do not contain a ring of carbon atoms but a chain of carbon atoms with carbon‑carbon single bonds.  The general molecular formula for alkanes is CnH2n+2.  “n” is the number of carbon atoms present.  Some of the basic examples of alkanes are methane (CH4), ethane (C2H6).  Cycloalkanes have the general molecular formula as CnH2n.

Alkenes and cycloalkenes are a class of unsaturated hydrocarbons that contain at least one double bond in its structure.  The general molecular formula for alkene with one double bond is CnH2n.  Alkene with two double bonds have the general molecular formula as CnH2n-2.  Cycloalkenes with one double bond have the general molecular formula as CnH2n-2.  Cycloalkenes with two double bonds have the general molecular formula as CnH2n-4.

Answer to Problem 13.28EP

The total number of hydrogen atoms present is 16.

Explanation of Solution

Cycloalkenes are unsaturated hydrocarbons that contain at least one double bond between carbon atoms with ring structure.  The general molecular formula for cycloalkene with one double bond is CnH2n-2.  Structure of 2-methylcyclopentene can be drawn as,

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.28EP , additional homework tip  4

Carbon atoms are present at the intersection and at the end points.  The above structure has seven intersections and two end points.  Therefore, there is a total of nine carbon atoms.  The total number of hydrogen atoms can be found by substituting in the general molecular formula as shown below,

  CnH2n-2C9H(2*9)2C9H16

The total number of hydrogen atoms that will be present in the given cycloalkene is found to be sixteen.

Conclusion

The total number of hydrogen atoms present in the molecule is sixteen.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider the following test samples: A. heptane   D. toluene B. hexane   E. benzene C. hexene   Which of the test samples will react with conc. H2SO4 ?
Which compound corresponds to a saturated hydrocarbon? A) 2-butyne B) cyclooctene C) 3-hexene D) 3-methylpentane E) 2-propanol
Explain the role of London dispersion forces on the melting and boiling points of alkanes.

Chapter 13 Solutions

General, Organic, and Biological Chemistry

Ch. 13.3 - Prob. 4QQCh. 13.4 - Prob. 1QQCh. 13.4 - Prob. 2QQCh. 13.5 - Prob. 1QQCh. 13.5 - Prob. 2QQCh. 13.5 - Prob. 3QQCh. 13.6 - Prob. 1QQCh. 13.6 - Prob. 2QQCh. 13.6 - Prob. 3QQCh. 13.7 - Prob. 1QQCh. 13.7 - Prob. 2QQCh. 13.7 - Prob. 3QQCh. 13.8 - Prob. 1QQCh. 13.8 - Prob. 2QQCh. 13.9 - Prob. 1QQCh. 13.9 - Prob. 2QQCh. 13.10 - Prob. 1QQCh. 13.10 - Prob. 2QQCh. 13.10 - Prob. 3QQCh. 13.10 - Prob. 4QQCh. 13.10 - Prob. 5QQCh. 13.11 - Prob. 1QQCh. 13.11 - Prob. 2QQCh. 13.11 - Prob. 3QQCh. 13.11 - Prob. 4QQCh. 13.11 - Prob. 5QQCh. 13.12 - Prob. 1QQCh. 13.12 - Prob. 2QQCh. 13.12 - Prob. 3QQCh. 13.12 - Prob. 4QQCh. 13.12 - Prob. 5QQCh. 13.13 - Prob. 1QQCh. 13.13 - Prob. 2QQCh. 13.13 - Prob. 3QQCh. 13.14 - Prob. 1QQCh. 13.14 - Prob. 2QQCh. 13.14 - Prob. 3QQCh. 13.14 - Prob. 4QQCh. 13.15 - Prob. 1QQCh. 13.15 - Prob. 2QQCh. 13.15 - Prob. 3QQCh. 13.15 - Prob. 4QQCh. 13.16 - Prob. 1QQCh. 13.16 - Prob. 2QQCh. 13 - Classify each of the following hydrocarbons as...Ch. 13 - Classify each of the following hydrocarbons as...Ch. 13 - Prob. 13.3EPCh. 13 - Prob. 13.4EPCh. 13 - Prob. 13.5EPCh. 13 - Prob. 13.6EPCh. 13 - Prob. 13.7EPCh. 13 - Prob. 13.8EPCh. 13 - Prob. 13.9EPCh. 13 - What is the molecular formula for each of the...Ch. 13 - Prob. 13.11EPCh. 13 - Prob. 13.12EPCh. 13 - What is wrong, if anything, with the following...Ch. 13 - Prob. 13.14EPCh. 13 - Prob. 13.15EPCh. 13 - Prob. 13.16EPCh. 13 - Prob. 13.17EPCh. 13 - Prob. 13.18EPCh. 13 - Draw a condensed structural formula for each of...Ch. 13 - Draw a condensed structural formula for each of...Ch. 13 - The following names are incorrect by IUPAC rules....Ch. 13 - The following names are incorrect by IUPAC rules....Ch. 13 - Prob. 13.23EPCh. 13 - Prob. 13.24EPCh. 13 - Prob. 13.25EPCh. 13 - Classify each of the following compounds as...Ch. 13 - Prob. 13.27EPCh. 13 - How many hydrogen atoms are present in a molecule...Ch. 13 - Prob. 13.29EPCh. 13 - Draw a line-angle structural formula for each of...Ch. 13 - Prob. 13.31EPCh. 13 - Prob. 13.32EPCh. 13 - Prob. 13.33EPCh. 13 - Prob. 13.34EPCh. 13 - Prob. 13.35EPCh. 13 - Prob. 13.36EPCh. 13 - Prob. 13.37EPCh. 13 - Prob. 13.38EPCh. 13 - For each of the following pairs of alkenes,...Ch. 13 - Prob. 13.40EPCh. 13 - Prob. 13.41EPCh. 13 - Prob. 13.42EPCh. 13 - Prob. 13.43EPCh. 13 - Prob. 13.44EPCh. 13 - Prob. 13.45EPCh. 13 - Prob. 13.46EPCh. 13 - For each molecule, indicate whether cistrans...Ch. 13 - For each molecule, indicate whether cistrans...Ch. 13 - Prob. 13.49EPCh. 13 - Prob. 13.50EPCh. 13 - Prob. 13.51EPCh. 13 - Draw a structural formula for each of the...Ch. 13 - Prob. 13.53EPCh. 13 - Prob. 13.54EPCh. 13 - Prob. 13.55EPCh. 13 - Prob. 13.56EPCh. 13 - Prob. 13.57EPCh. 13 - Prob. 13.58EPCh. 13 - Why is the number of carbon atoms in a terpene...Ch. 13 - How many isoprene units are present in a....Ch. 13 - Prob. 13.61EPCh. 13 - Indicate whether each of the following statements...Ch. 13 - Prob. 13.63EPCh. 13 - With the help of Figure 13-7, indicate whether...Ch. 13 - Prob. 13.65EPCh. 13 - Prob. 13.66EPCh. 13 - Prob. 13.67EPCh. 13 - Prob. 13.68EPCh. 13 - Prob. 13.69EPCh. 13 - Prob. 13.70EPCh. 13 - Prob. 13.71EPCh. 13 - Prob. 13.72EPCh. 13 - Prob. 13.73EPCh. 13 - Prob. 13.74EPCh. 13 - Prob. 13.75EPCh. 13 - Write a chemical equation showing reactants,...Ch. 13 - Supply the structural formula of the product in...Ch. 13 - Prob. 13.78EPCh. 13 - What reactant would you use to prepare each of the...Ch. 13 - Prob. 13.80EPCh. 13 - Prob. 13.81EPCh. 13 - Prob. 13.82EPCh. 13 - Prob. 13.83EPCh. 13 - Prob. 13.84EPCh. 13 - Prob. 13.85EPCh. 13 - Prob. 13.86EPCh. 13 - Prob. 13.87EPCh. 13 - Prob. 13.88EPCh. 13 - Prob. 13.89EPCh. 13 - Prob. 13.90EPCh. 13 - Prob. 13.91EPCh. 13 - Prob. 13.92EPCh. 13 - Prob. 13.93EPCh. 13 - What are the bond angles about the triple bond in...Ch. 13 - Prob. 13.95EPCh. 13 - Prob. 13.96EPCh. 13 - Prob. 13.97EPCh. 13 - Prob. 13.98EPCh. 13 - Prob. 13.99EPCh. 13 - Prob. 13.100EPCh. 13 - Prob. 13.101EPCh. 13 - Prob. 13.102EPCh. 13 - Prob. 13.103EPCh. 13 - Prob. 13.104EPCh. 13 - Prob. 13.105EPCh. 13 - Prob. 13.106EPCh. 13 - Prob. 13.107EPCh. 13 - Prob. 13.108EPCh. 13 - Assign each of the compounds in Problem 13-107 an...Ch. 13 - Assign each of the compounds in Problem 13-108 an...Ch. 13 - Prob. 13.111EPCh. 13 - Prob. 13.112EPCh. 13 - Prob. 13.113EPCh. 13 - Prob. 13.114EPCh. 13 - Prob. 13.115EPCh. 13 - Write a structural formula for each of the...Ch. 13 - Eight isomeric substituted benzenes have the...Ch. 13 - Prob. 13.118EPCh. 13 - Prob. 13.119EPCh. 13 - Prob. 13.120EPCh. 13 - Prob. 13.121EPCh. 13 - Prob. 13.122EPCh. 13 - Prob. 13.123EPCh. 13 - Prob. 13.124EPCh. 13 - Prob. 13.125EPCh. 13 - For each of the following classes of compounds,...Ch. 13 - Prob. 13.127EPCh. 13 - Prob. 13.128EPCh. 13 - Prob. 13.129EPCh. 13 - Prob. 13.130EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License