Chemistry: Atoms First
Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 13.94QP

Lysozyme is an enzyme that cleaves bacterial cell walls. A sample of lysozyme extracted from egg white has a molar mass of 13.930 g. A quantity of 0.100 g of this enzyme is dissolved in 150 g of water at 25°C. Calculate the vapor-pressure lowering, the depression in freezing point, the elevation in boiling point, and die osmotic pressure of this solution. (The vapor pressure of water at 25°C is 23.76 mmHg.)

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

For given solution vapor pressure lowering, freezing point depression, boiling point elevation and osmotic pressures to be calculated.

Concept introduction

Boiling point elevation (ΔTb) : Boiling point is the distinction between boiling point of the pure solvent ( Tb° ) and the boiling point of the solution ( Tb ).

ΔTb= Kbm

Where,

ΔTb= Change ib boiling pointTb= Boiling point of the solutionTb°= Boiling point of pure solvent

Freezing point depression (ΔTf) : Freezing point depression is the distinction between freezing point of the pure solvent (Tf°) and freezing point of the solution (Tf) .

ΔTf= Kfm

Where,

ΔTf= Change in freezing pointTf= Freezing point of the solutionTf°= Freezing point of pure solvent

Osmotic pressure is the pressure that is needed to stop osmosis. Osmotic pressure of the solution is directly proportional to the concentration of the solution.  We can calculate osmotic pressure by using this formula is given by,

osmotic pressure(π) = MRT

Where,

Vapor pressure lowering: Vapor pressure lowering is one of the colligative properties. Pure solvent has higher vapour pressure than its solution have non-volatile liquid.  Thus vapour pressure lowering guide boiling point elevation.

ΔP = χBA

Where,

χB- Mole fraction of the soluteP°C- vapor pressure of the pure solvent

Answer to Problem 13.94QP

Answer

Vapour pressure lowering of the solution is 2.05×10-5mm Hg

Freezing point elevation is 8.90×10-5°C.

Boiling point elevation is 2.5×10-5°C.

Osmotic pressure is 0.889 mmHg.

Explanation of Solution

Explanation

Given data

Molar mass of egg white = 13,930g

Amount of enzyme which is dissolved in water = 0.100g

Amount of water = 150g

Vapor pressure of water = 23.76 mmHg at 25°C

Calculation of number of moles in lysozyme and water

nIsozyme=1.00g×1mol13,930g=7.18×10-6mol

Molecular mass of water = 18.02g/mol

nwater=150g×1mol18.02g= 8.32mol

By plugging in the value of amount of Isozyme and molar mass of egg white, mole of Isozyme has calculated.  Similarly, by plugging in the value of amount of water and molar mass of water, mole of water has calculated.

Calculation of vapour pressure lowering of the solution

ΔP = χIysozymewater=nIsozymenIsozyme+nwater(23.76mmHg)

ΔP=7.18×10-6mol[(7.18×10-6)+8.32mol](23.76mmHg) = 2.05×10-5mmHg

By plugging in the values of mole fraction of Isozyme and vapour pressure of water, vapour pressure lowering of the solution has calculated.

Calculation freezing point depression of the solution

Molal freezing point depression constant = 1.86°C/m

ΔTf =Kfm =(1.86°C/m)[7.18×10-6mol0.150kg]= 8.90×10-5°C

By plugging in the values of molal freezing point depression constant and molality of the solution, freezing point depression of the solution has calculated.

Calculation of boiling point elevation of the solution

Boiling point elevation constant = 1.52°C/m

ΔTb =Kbm =(1.86°C/m)[7.18×10-6mol0.150kg]= 2.5×10-5°C

By plugging in the values of boiling point elevation constant and molality of the solution, boiling point elevation of the solution has calculated.

Calculation of osmotic pressure of the solution

As known above, we assume the density of the solution is 1.00g/mL. The volume of the solution will be150mL.

π = MRT =(7.18×10-6mol0.150L)(0.08206L.atm/K.mol)(298K)=1.17×10-3atm = 0.889mmHg

By plugging in the values of molarity of the solution, ideal gas constant and temperature in Kelvin, the osmotic pressure of the solution has calculated.

Conclusion

Conclusion

Vapour pressure lowering of the solution was calculated as 2.05×10-5mm Hg

Freezing point elevation has calculated as 8.90×10-5°C.

Boiling point elevation has calculated as 2.5×10-5°C.

Osmotic pressure has calculated as 0.889 mmHg.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 13 Solutions

Chemistry: Atoms First

Ch. 13.3 - Rubbing alcohol is a mixture of isopropyl alcohol...Ch. 13.3 - Prob. 3PPACh. 13.3 - Prob. 3PPBCh. 13.3 - Prob. 3PPCCh. 13.3 - Prob. 13.3.1SRCh. 13.3 - Prob. 13.3.2SRCh. 13.3 - Prob. 13.3.3SRCh. 13.3 - Prob. 13.3.4SRCh. 13.4 - Calculate the concentration of carbon dioxide in a...Ch. 13.4 - Calculate the concentration of CO2 in water at 25C...Ch. 13.4 - Prob. 4PPBCh. 13.4 - Prob. 4PPCCh. 13.4 - Prob. 13.4.1SRCh. 13.4 - Prob. 13.4.2SRCh. 13.5 - Prob. 13.5WECh. 13.5 - Calculate the vapor pressure of a solution made by...Ch. 13.5 - Calculate the mass of urea that should be...Ch. 13.5 - The diagrams [(i)(iv)] represent four closed...Ch. 13.5 - Ethylene glycol [CH2(OH)CH2(OH)] is a common...Ch. 13.5 - Prob. 6PPACh. 13.5 - What mass of ethylene glycol must be added to 1525...Ch. 13.5 - Prob. 6PPCCh. 13.5 - Prob. 13.7WECh. 13.5 - Prob. 7PPACh. 13.5 - Prob. 7PPBCh. 13.5 - Prob. 7PPCCh. 13.5 - Prob. 13.5.1SRCh. 13.5 - Prob. 13.5.2SRCh. 13.5 - Prob. 13.5.3SRCh. 13.5 - Prob. 13.5.4SRCh. 13.6 - Quinine was the first drug widely used to treat...Ch. 13.6 - Prob. 8PPACh. 13.6 - Prob. 8PPBCh. 13.6 - Prob. 8PPCCh. 13.6 - Prob. 13.9WECh. 13.6 - A solution made by dissolving 25 mg of insulin in...Ch. 13.6 - What mass of insulin must be dissolved in 50.0 mL...Ch. 13.6 - The first diagram represents one aqueous solution...Ch. 13.6 - Prob. 13.10WECh. 13.6 - An aqueous solution that is 0.0100 M in acetic...Ch. 13.6 - Prob. 10PPBCh. 13.6 - Prob. 10PPCCh. 13.6 - Prob. 13.6.1SRCh. 13.6 - Prob. 13.6.2SRCh. 13 - Prob. 13.1QPCh. 13 - Prob. 13.2QPCh. 13 - Prob. 13.3QPCh. 13 - Prob. 13.4QPCh. 13 - Prob. 13.5QPCh. 13 - Prob. 13.6QPCh. 13 - Explain why dissolving a solid almost always leads...Ch. 13 - Describe the factors that affect the solubility of...Ch. 13 - Prob. 13.9QPCh. 13 - Prob. 13.10QPCh. 13 - Arrange the following compounds in order of...Ch. 13 - Prob. 13.12QPCh. 13 - Prob. 13.13QPCh. 13 - Prob. 13.14QPCh. 13 - Prob. 13.15QPCh. 13 - Prob. 13.16QPCh. 13 - Prob. 13.17QPCh. 13 - Prob. 13.18QPCh. 13 - Prob. 13.19QPCh. 13 - Prob. 13.20QPCh. 13 - Prob. 13.21QPCh. 13 - Prob. 13.22QPCh. 13 - Prob. 13.23QPCh. 13 - Prob. 13.24QPCh. 13 - Fish breathe the dissolved air in water through...Ch. 13 - Prob. 13.26QPCh. 13 - Discuss the factors that influence the solubility...Ch. 13 - What is thermal pollution? Why is it harmful to...Ch. 13 - Prob. 13.29QPCh. 13 - A student is observing two beakers of water. One...Ch. 13 - A man bought a goldfish in a pet shop. Upon...Ch. 13 - A 3.20-g sample of a salt dissolves in 9.10 g of...Ch. 13 - The solubility of KNO3 is 155 g per 100 g of water...Ch. 13 - Prob. 13.34QPCh. 13 - The solubility of CO2 in water at 25C and 1 atm is...Ch. 13 - The solubility of N2 in blood at 37C and at a...Ch. 13 - The difference between water-soluble and...Ch. 13 - Predict whether each vitamin will be water soluble...Ch. 13 - Prob. 13.39QPCh. 13 - The first diagram represents an open system with...Ch. 13 - The diagrams represent an aqueous solution at two...Ch. 13 - Prob. 13.42QPCh. 13 - Prob. 13.43QPCh. 13 - Write the equation representing Raoults law, and...Ch. 13 - Prob. 13.45QPCh. 13 - Write the equations relating boiling-point...Ch. 13 - Prob. 13.47QPCh. 13 - Prob. 13.48QPCh. 13 - What is osmosis? What is a semipermeable membrane?Ch. 13 - Prob. 13.50QPCh. 13 - Prob. 13.51QPCh. 13 - Prob. 13.52QPCh. 13 - What are ion pairs? What effect does ion-pair...Ch. 13 - Prob. 13.54QPCh. 13 - Prob. 13.55QPCh. 13 - Prob. 13.56QPCh. 13 - Prob. 13.57QPCh. 13 - The vapor pressure of benzene is 100.0 mmHg at...Ch. 13 - The vapor pressures of ethanol (C2H5OH) and...Ch. 13 - The vapor pressure of ethanol (C2H5OH) at 20C is...Ch. 13 - Prob. 13.61QPCh. 13 - What arc the boiling point and freezing point of a...Ch. 13 - Prob. 13.63QPCh. 13 - How many liters of the antifreeze ethylene glycol...Ch. 13 - Prob. 13.65QPCh. 13 - Prob. 13.66QPCh. 13 - What are the normal freezing points and boiling...Ch. 13 - At 25C, the vapor pressure of pure water is 23.76...Ch. 13 - Both NaCl and CaCl2 are used to melt ice on roads...Ch. 13 - A 0.86 percent by mass solution of NaCl is called...Ch. 13 - Prob. 13.71QPCh. 13 - Calculate the osmotic pressure of a 0.0500 M MgSO4...Ch. 13 - The tallest trees known are the redwoods in...Ch. 13 - Calculate the difference in osmotic pressure (in...Ch. 13 - Prob. 13.75QPCh. 13 - Consider two aqueous solutions, one of sucrose...Ch. 13 - Arrange the following solutions in order of...Ch. 13 - Prob. 13.78QPCh. 13 - Indicate which compound in each of the following...Ch. 13 - Describe how you would use freezing-point...Ch. 13 - Prob. 13.81QPCh. 13 - The elemental analysis of an organic solid...Ch. 13 - A solution of 2.50 g of a compound having the...Ch. 13 - The molar mass of benzoic acid (C6H5COOH)...Ch. 13 - A solution containing 0.8330 g of a polymer of...Ch. 13 - Prob. 13.86QPCh. 13 - A solution of 6.S5 g of a carbohydrate m 100.0 g...Ch. 13 - A 0.036-M aqueous nitrous acid (HNO2) solution has...Ch. 13 - Prob. 13.89QPCh. 13 - Prob. 13.90QPCh. 13 - Prob. 13.91QPCh. 13 - Prob. 13.92QPCh. 13 - Prob. 13.93QPCh. 13 - Lysozyme is an enzyme that cleaves bacterial cell...Ch. 13 - The blood sugar (glucose) level of a diabetic...Ch. 13 - Trees in cold climates may be subjected to...Ch. 13 - Prob. 13.97QPCh. 13 - Two liquids A and B have vapor pressures of 76 and...Ch. 13 - Determine the van't Hoff factor of Na3PO4 in a...Ch. 13 - Prob. 13.100QPCh. 13 - Consider the three mercury manometers shown in the...Ch. 13 - A forensic chemist is given a white powder for...Ch. 13 - Prob. 13.103QPCh. 13 - A solution of 1.00 g of anhydrous aluminum...Ch. 13 - Explain why reverse osmosis is (theoretically)...Ch. 13 - What masses of sodium chloride, magnesium...Ch. 13 - The osmotic pressure of blood plasma is...Ch. 13 - Prob. 13.108QPCh. 13 - A protein has been isolated as a salt with the...Ch. 13 - A nonvolatile organic compound Z was used to make...Ch. 13 - Prob. 13.111QPCh. 13 - State which of the alcohols listed in Problem...Ch. 13 - Before a carbonated beverage bottle is sealed, it...Ch. 13 - Iodine (I2) is only sparingly soluble in water...Ch. 13 - (a) The root cells of plants contain a solution...Ch. 13 - Hemoglobin, the oxygen-transport protein, binds...Ch. 13 - Prob. 13.117QPCh. 13 - In the apparatus shown, what will happen if the...Ch. 13 - Concentrated hydrochloric acid is usually...Ch. 13 - Explain each of the following statements: (a) The...Ch. 13 - Prob. 13.121QPCh. 13 - A 1.32-g sample of a mixture of cyclohexane...Ch. 13 - How does each of the following affect the...Ch. 13 - A solution contains two volatile liquids A and B....Ch. 13 - Prob. 13.125QPCh. 13 - A mixture of ethanol and 1-propanol behaves...Ch. 13 - Ammonia (NH3) is very soluble in water, but...Ch. 13 - For ideal solutions, the volumes are additive....Ch. 13 - Acetic acid is a weak acid that ionizes in...Ch. 13 - Which vitamins (sec the given structures) do you...Ch. 13 - Calculate the percent by mass of the solute in...Ch. 13 - Acetic acid is a polar molecule and can form...Ch. 13 - Prob. 13.133QPCh. 13 - Fish in the Antarctic Ocean swim in water at about...Ch. 13 - Why are ice cubes (e.g., those you see in the...Ch. 13 - Prob. 13.136QPCh. 13 - Two beakers are placed in a closed container...Ch. 13 - (a) Derive the equation relating the molality (m)...Ch. 13 - At 27C, the vapor pressure of pure water is 23.76...Ch. 13 - A very long pipe is capped at one end with a...Ch. 13 - A mixture of liquids A and B exhibits ideal...Ch. 13 - Use Henrys law and the ideal gas equation to prove...Ch. 13 - Prob. 13.143QPCh. 13 - Prob. 13.144QPCh. 13 - The diagram here shows vapor pressure curves for...Ch. 13 - Valinomycin is an antibiotic. It functions by...Ch. 13 - Prob. 13.147QPCh. 13 - Prob. 13.148QPCh. 13 - Prob. 13.149QPCh. 13 - Explain why we cannot use osmotic pressure to...Ch. 13 - Which of the following processes is accompanied by...Ch. 13 - For each of the processes depicted here, determine...Ch. 13 - For each of the processes depicted here, determine...Ch. 13 - Prob. 13.4KSP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY