BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Use rectangles to find the exact area under the graph of y  –  3 x 2 from x = 0 to x = 1. Use n equal subintervals.

To determine

To calculate: The area under the graph of y=3x2 from x=0 to x=1 using the n equal-intervals of the same size and use rectangles to find the exact area.

Explanation

Given Information:

The provided function is y=3x2 from x=0 to x=1.

Formula Used:

The base of the rectangles to approximate the area is ban where the interval [a,b] on which function is defined is divided into n subintervals.

The height of the rectangles is the value of the function calculated at the right-hand end point of the interval containing the base.

The area of a rectangle is base×height.

The approximated area under the curve is the sum of the areas of each rectangle.

The value of the sum k=1nk3=(n(n+1)2)2.

Calculation:

The curve is y=3x2 from x=0 to x=1 and the interval [0,1] is divided into n subintervals and the function is evaluated at right-hand end points of the subintervals.

The base of the rectangles to approximate the area is ban where the interval [a,b] on which function is defined is divided into n subintervals.

Since, the function is defined from x=0 to x=1. So, a=0 and b=1.

Thus,

Base of each rectangle=10n=1n

Thus, the n subintervals, each of length 1n, are [0,1n], [1n,2n],,[n1n,1].

Since, there are n subintervals, the number of rectangles is n.

Recall that the height of the rectangles is the value of the function calculated at the right-hand end point of the interval containing the base.

Since, the right-hand end point of the first subinterval [0,1n] is 1n.

Thus, the height of the first rectangle is,

y=3x2=3(1n)2=3n2

Recall that the area of a rectangle is base×height.

Thus, the area of the first rectangle is,

Area=base×height=1n×3n2=3n3

Do a similar calculation to find the area of all n rectangles and record these values in a table.

Rectangle Base Right endpoint Height Area=base×height
1 1n x1=1n y=3(1n)2=3n2 1n×3n2=3n3
2 1n x2=2n y=3(2n)2=12n2 1n×12n2=12n3
3 1n x3=3n y=3(3n)2=27n2 1n×27n2=27n3
n 1n xn=nn=1 y=3(1)2=3 1n×3=3n

Recall that the approximated area under the curve is sum of the areas of each rectangle

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 13 Solutions

Show all chapter solutions add
Sect-13.1 P-9ESect-13.1 P-10ESect-13.1 P-11ESect-13.1 P-12ESect-13.1 P-13ESect-13.1 P-14ESect-13.1 P-15ESect-13.1 P-16ESect-13.1 P-17ESect-13.1 P-18ESect-13.1 P-19ESect-13.1 P-20ESect-13.1 P-21ESect-13.1 P-22ESect-13.1 P-23ESect-13.1 P-24ESect-13.1 P-25ESect-13.1 P-26ESect-13.1 P-27ESect-13.1 P-28ESect-13.1 P-29ESect-13.1 P-30ESect-13.1 P-31ESect-13.1 P-32ESect-13.1 P-33ESect-13.1 P-34ESect-13.1 P-35ESect-13.1 P-36ESect-13.1 P-37ESect-13.1 P-38ESect-13.1 P-39ESect-13.1 P-40ESect-13.2 P-1CPSect-13.2 P-2CPSect-13.2 P-1ESect-13.2 P-2ESect-13.2 P-3ESect-13.2 P-4ESect-13.2 P-5ESect-13.2 P-6ESect-13.2 P-9ESect-13.2 P-10ESect-13.2 P-11ESect-13.2 P-12ESect-13.2 P-7ESect-13.2 P-8ESect-13.2 P-23ESect-13.2 P-24ESect-13.2 P-13ESect-13.2 P-14ESect-13.2 P-15ESect-13.2 P-16ESect-13.2 P-17ESect-13.2 P-18ESect-13.2 P-19ESect-13.2 P-20ESect-13.2 P-21ESect-13.2 P-22ESect-13.2 P-25ESect-13.2 P-26ESect-13.2 P-27ESect-13.2 P-28ESect-13.2 P-29ESect-13.2 P-30ESect-13.2 P-31ESect-13.2 P-32ESect-13.2 P-33ESect-13.2 P-34ESect-13.2 P-35ESect-13.2 P-36ESect-13.2 P-37ESect-13.2 P-38ESect-13.2 P-39ESect-13.2 P-40ESect-13.2 P-41ESect-13.2 P-42ESect-13.2 P-43ESect-13.2 P-44ESect-13.2 P-45ESect-13.2 P-46ESect-13.2 P-47ESect-13.2 P-48ESect-13.2 P-49ESect-13.2 P-50ESect-13.2 P-51ESect-13.2 P-52ESect-13.2 P-53ESect-13.2 P-54ESect-13.2 P-55ESect-13.2 P-56ESect-13.2 P-57ESect-13.2 P-58ESect-13.2 P-59ESect-13.2 P-60ESect-13.2 P-61ESect-13.2 P-62ESect-13.2 P-63ESect-13.2 P-64ESect-13.2 P-65ESect-13.2 P-66ESect-13.2 P-67ESect-13.2 P-68ESect-13.3 P-1CPSect-13.3 P-2CPSect-13.3 P-3CPSect-13.3 P-1ESect-13.3 P-2ESect-13.3 P-3ESect-13.3 P-4ESect-13.3 P-5ESect-13.3 P-6ESect-13.3 P-7ESect-13.3 P-8ESect-13.3 P-9ESect-13.3 P-10ESect-13.3 P-11ESect-13.3 P-12ESect-13.3 P-13ESect-13.3 P-14ESect-13.3 P-15ESect-13.3 P-16ESect-13.3 P-17ESect-13.3 P-18ESect-13.3 P-19ESect-13.3 P-20ESect-13.3 P-21ESect-13.3 P-22ESect-13.3 P-23ESect-13.3 P-24ESect-13.3 P-25ESect-13.3 P-26ESect-13.3 P-27ESect-13.3 P-28ESect-13.3 P-29ESect-13.3 P-30ESect-13.3 P-31ESect-13.3 P-32ESect-13.3 P-33ESect-13.3 P-34ESect-13.3 P-35ESect-13.3 P-36ESect-13.3 P-37ESect-13.3 P-38ESect-13.3 P-39ESect-13.3 P-40ESect-13.3 P-41ESect-13.3 P-42ESect-13.3 P-43ESect-13.3 P-44ESect-13.3 P-45ESect-13.3 P-46ESect-13.3 P-47ESect-13.3 P-48ESect-13.3 P-49ESect-13.3 P-50ESect-13.4 P-1CPSect-13.4 P-2CPSect-13.4 P-3CPSect-13.4 P-1ESect-13.4 P-2ESect-13.4 P-3ESect-13.4 P-4ESect-13.4 P-5ESect-13.4 P-6ESect-13.4 P-7ESect-13.4 P-8ESect-13.4 P-9ESect-13.4 P-10ESect-13.4 P-11ESect-13.4 P-12ESect-13.4 P-13ESect-13.4 P-14ESect-13.4 P-15ESect-13.4 P-16ESect-13.4 P-17ESect-13.4 P-18ESect-13.4 P-19ESect-13.4 P-20ESect-13.4 P-21ESect-13.4 P-22ESect-13.4 P-23ESect-13.4 P-24ESect-13.4 P-25ESect-13.4 P-26ESect-13.4 P-27ESect-13.4 P-28ESect-13.4 P-29ESect-13.4 P-30ESect-13.4 P-31ESect-13.4 P-32ESect-13.4 P-33ESect-13.4 P-34ESect-13.4 P-35ESect-13.4 P-36ESect-13.5 P-1CPSect-13.5 P-2CPSect-13.5 P-3CPSect-13.5 P-4CPSect-13.5 P-5CPSect-13.5 P-6CPSect-13.5 P-1ESect-13.5 P-2ESect-13.5 P-3ESect-13.5 P-4ESect-13.5 P-5ESect-13.5 P-6ESect-13.5 P-7ESect-13.5 P-8ESect-13.5 P-9ESect-13.5 P-10ESect-13.5 P-11ESect-13.5 P-12ESect-13.5 P-13ESect-13.5 P-14ESect-13.5 P-15ESect-13.5 P-16ESect-13.5 P-17ESect-13.5 P-18ESect-13.5 P-19ESect-13.5 P-20ESect-13.5 P-21ESect-13.5 P-22ESect-13.5 P-23ESect-13.5 P-24ESect-13.5 P-25ESect-13.5 P-26ESect-13.5 P-27ESect-13.5 P-28ESect-13.5 P-29ESect-13.5 P-30ESect-13.5 P-31ESect-13.5 P-32ESect-13.5 P-33ESect-13.5 P-34ESect-13.5 P-35ESect-13.5 P-36ESect-13.5 P-37ESect-13.5 P-38ESect-13.5 P-39ESect-13.5 P-40ESect-13.5 P-41ESect-13.5 P-42ESect-13.6 P-1CPSect-13.6 P-2CPSect-13.6 P-1ESect-13.6 P-2ESect-13.6 P-3ESect-13.6 P-4ESect-13.6 P-5ESect-13.6 P-6ESect-13.6 P-7ESect-13.6 P-8ESect-13.6 P-9ESect-13.6 P-10ESect-13.6 P-11ESect-13.6 P-12ESect-13.6 P-13ESect-13.6 P-14ESect-13.6 P-15ESect-13.6 P-16ESect-13.6 P-17ESect-13.6 P-18ESect-13.6 P-19ESect-13.6 P-20ESect-13.6 P-21ESect-13.6 P-22ESect-13.6 P-23ESect-13.6 P-24ESect-13.6 P-25ESect-13.6 P-26ESect-13.6 P-27ESect-13.6 P-28ESect-13.6 P-29ESect-13.6 P-30ESect-13.6 P-31ESect-13.6 P-32ESect-13.6 P-33ESect-13.6 P-34ESect-13.6 P-35ESect-13.6 P-36ESect-13.6 P-37ESect-13.6 P-38ESect-13.7 P-1CPSect-13.7 P-2CPSect-13.7 P-1ESect-13.7 P-2ESect-13.7 P-3ESect-13.7 P-4ESect-13.7 P-5ESect-13.7 P-6ESect-13.7 P-7ESect-13.7 P-8ESect-13.7 P-9ESect-13.7 P-10ESect-13.7 P-11ESect-13.7 P-12ESect-13.7 P-13ESect-13.7 P-14ESect-13.7 P-15ESect-13.7 P-16ESect-13.7 P-17ESect-13.7 P-18ESect-13.7 P-19ESect-13.7 P-20ESect-13.7 P-21ESect-13.7 P-22ESect-13.7 P-23ESect-13.7 P-24ESect-13.7 P-25ESect-13.7 P-26ESect-13.7 P-27ESect-13.7 P-28ESect-13.7 P-29ESect-13.7 P-30ESect-13.7 P-31ESect-13.7 P-32ESect-13.7 P-33ESect-13.7 P-34ESect-13.7 P-35ESect-13.7 P-36ESect-13.7 P-37ESect-13.7 P-38ESect-13.7 P-39ESect-13.7 P-40ESect-13.7 P-41ESect-13.7 P-42ESect-13.7 P-43ESect-13.7 P-44ESect-13.7 P-45ESect-13.7 P-47ESect-13.8 P-1CPSect-13.8 P-2CPSect-13.8 P-3CPSect-13.8 P-1ESect-13.8 P-2ESect-13.8 P-3ESect-13.8 P-4ESect-13.8 P-5ESect-13.8 P-6ESect-13.8 P-7ESect-13.8 P-8ESect-13.8 P-9ESect-13.8 P-10ESect-13.8 P-11ESect-13.8 P-12ESect-13.8 P-13ESect-13.8 P-14ESect-13.8 P-15ESect-13.8 P-16ESect-13.8 P-17ESect-13.8 P-18ESect-13.8 P-19ESect-13.8 P-20ESect-13.8 P-21ESect-13.8 P-22ESect-13.8 P-23ESect-13.8 P-24ESect-13.8 P-25ESect-13.8 P-26ESect-13.8 P-27ESect-13.8 P-28ESect-13.8 P-29ESect-13.8 P-30ESect-13.8 P-31ESect-13.8 P-32ESect-13.8 P-33ESect-13.8 P-34ECh-13 P-1RECh-13 P-2RECh-13 P-3RECh-13 P-4RECh-13 P-5RECh-13 P-6RECh-13 P-7RECh-13 P-8RECh-13 P-9RECh-13 P-10RECh-13 P-11RECh-13 P-12RECh-13 P-13RECh-13 P-14RECh-13 P-15RECh-13 P-16RECh-13 P-17RECh-13 P-18RECh-13 P-19RECh-13 P-20RECh-13 P-21RECh-13 P-22RECh-13 P-23RECh-13 P-24RECh-13 P-25RECh-13 P-26RECh-13 P-27RECh-13 P-28RECh-13 P-29RECh-13 P-30RECh-13 P-31RECh-13 P-32RECh-13 P-33RECh-13 P-34RECh-13 P-35RECh-13 P-36RECh-13 P-37RECh-13 P-38RECh-13 P-39RECh-13 P-40RECh-13 P-41RECh-13 P-42RECh-13 P-43RECh-13 P-44RECh-13 P-45RECh-13 P-46RECh-13 P-47RECh-13 P-48RECh-13 P-49RECh-13 P-50RECh-13 P-51RECh-13 P-53RECh-13 P-54RECh-13 P-55RECh-13 P-1TCh-13 P-2TCh-13 P-3TCh-13 P-4TCh-13 P-5TCh-13 P-6TCh-13 P-7TCh-13 P-8TCh-13 P-9TCh-13 P-10TCh-13 P-11TCh-13 P-12TCh-13 P-13TCh-13 P-14TCh-13 P-15TCh-13 P-16T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Find the most general antiderivative of the function. f(x) = x3 + cosh x

Single Variable Calculus: Early Transcendentals, Volume I

Expand each expression in Exercises 122. (xx2)(x+x2)

Finite Mathematics and Applied Calculus (MindTap Course List)

Fill in the blanks. 1. If f is a function from the set A to the set B, then A is called the _________ of f, and...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Sketching a Line in the Plane In Exercises 3138, sketch a graph of the equation. 2x73=0

Calculus: Early Transcendental Functions (MindTap Course List)

Using for |x| < 1 and differentiation, find a power series for .

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th