
Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 4RP
What is the total force exerted on the bottom of a rectangular tank 8.67 ft×4.83 ft×3.56 ft deep?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
20.) Another observer is standing at the train station as Train B
passes by at a distance of d= 6,000 m away. (See the diagram).
At that instant, what is the minimum (nonzero) distance, L, that
the trains could be separated by in order to have constructive
interference at the location of the observer? Assume Train A
blows also blows its horn emitting a frequency of 400 Hz. Give
an answer in meters.
(A) 101
(D) 67.9
(B) 87.6
(E) 76.5
(C) 45.2
--L
4
B
D
Problem Four. A bullet with mass m = 20.0 g bullet is fired into a block with mass M = 7.00 kg which is
attached to a spring. The bullet is moving with a speed of 350 m/s at the moment of collision. After the
collision, the block (with bullet embedded) compresses the spring to a maximum displacement of 48.0 cm.
8.) Find the spring constant in N/m.
(A) 90.2
(B) 30.3
(C) 55.3
(D) 41.7
(E) 14.3
9.) After the spring is compressed, the system undergoes simple harmonic motion. Find the magnitude
of the velocity when the block (with embedded bullet) is a third of the way through a full amplitude.
Give an answer in cm/s.
(A) 76
(B) 54
(C) 32
(D) 16
(E) 94
Problem Two. A diatomic ideal gas (with translation and rotation
degrees of freedom) is taken around the process shown.
3.) Find the work done on the gas (in J) after one cycle ABCA.
(A)-30
(B)-10
(C)-20
(D) 20
P(pa)
40
(E) 30
4.) By what factor does the internal energy at point A compare to the
internal energy at point C?
(A) 10
(B) 6.0
(C) 24
(D) 12
(E) 8.0
5.) Find the heat transfer (in J) during the process A-B.
10
10
(A)-70
(B) 15
(C) 70
(D)-15
(E)-56
6.) Find the heat transfer (in J) during the
(A)-225
(B) 135
process
B-C.
(C) -135
(D) 225
(E)-70
C
B
A
V (m³)
3
Chapter 13 Solutions
Applied Physics (11th Edition)
Ch. 13.1 - Find the pressure (in lb/in2) at the bottom of a...Ch. 13.1 - Find the height of a column of water where the...Ch. 13.1 - Find the density of a liquid that exerts a...Ch. 13.1 - (a) Find the total force on the bottom of a...Ch. 13.1 - What must the water pressure be to supply water to...Ch. 13.1 - A small rectangular tank 5.00 in. by 9.00 in. is...Ch. 13.1 - Find the water pressure (in kPa) at the 25.0-m...Ch. 13.1 - Find the height of a column of water where the...Ch. 13.1 - What is the height of a column of water if the...Ch. 13.1 - What is the mass density of a liquid that exerts a...
Ch. 13.1 - What is the mass density of a liquid that exerts a...Ch. 13.1 - (a) Find the total force on the bottom of a...Ch. 13.1 - What must the water pressure be to supply the...Ch. 13.1 - Find the water pressure at ground level to supply...Ch. 13.1 - What pressure must a pump supply to pump water up...Ch. 13.1 - A submarine is submerged to a depth of 3550 m in...Ch. 13.1 - A filled water tower sits on the top of the...Ch. 13.1 - A filled water tower sits on the top of the...Ch. 13.1 - A filled water tower sits on the top of the...Ch. 13.1 - A filed water tower sits on the top of the highest...Ch. 13.1 - A filed water tower sits on the top of the highest...Ch. 13.1 - A cylindrical grain bin 24.0 ft in diameter is...Ch. 13.2 - The area of the small piston in a hydraulic jack...Ch. 13.2 - The mechanical advantage of a hydraulic press is...Ch. 13.2 - Find the mechanical advantage of a hydraulic press...Ch. 13.2 - The mechanical advantage of a hydraulic press is...Ch. 13.2 - Find the mechanical advantage of a hydraulic press...Ch. 13.2 - The small piston of a hydraulic press has an area...Ch. 13.2 - The MA of a hydraulic jack is 250. What force must...Ch. 13.2 - The small piston of a hydraulic press has an area...Ch. 13.2 - The MA of a hydraulic jack is 420. Find the weight...Ch. 13.2 - The mechanical advantage of a hydraulic jack is...Ch. 13.2 - The pistons of a hydraulic press have radii of...Ch. 13.2 - The small circular piston of a hydraulic press has...Ch. 13.2 - The large piston on a hydraulic lift has radius...Ch. 13.2 - In a hydraulic system a 20.0-N force is applied to...Ch. 13.2 - If the diameter of the larger piston in Problem 14...Ch. 13.2 - If a dentists chair weighs 1600 N and is raised by...Ch. 13.2 - A hydraulic jack whose piston has a...Ch. 13.2 - Compressed air in a car lift applies a force to a...Ch. 13.2 - The small piston of an automobile lift has an area...Ch. 13.2 - If the lifting force of a hydraulic truck jack is...Ch. 13.3 - Change 815 kPa to lb/in2.Ch. 13.3 - Change 64.3 lb/in2 to kPa.Ch. 13.3 - Change 42.5 lb/in2 to kPa.Ch. 13.3 - Change 215 kPa to lb/in2.Ch. 13.3 - Find the pressure of (a) 3 atm (in kPa), (b) 2 atm...Ch. 13.3 - A barometer in the Rocky Mountains reads 516 mm of...Ch. 13.3 - Find the absolute pressure in a bicycle tire with...Ch. 13.3 - Find the absolute pressure of a motorcycle tire...Ch. 13.3 - Find the gauge pressure of a tire with an absolute...Ch. 13.3 - Find the gauge pressure of a tire with an absolute...Ch. 13.3 - Find the absolute pressure of a tire gauge that...Ch. 13.3 - Find the absolute pressure of a tank whose gauge...Ch. 13.3 - Find the gauge pressure of a tank whose absolute...Ch. 13.3 - Find the gauge pressure of a tank whose absolute...Ch. 13.3 - Find the absolute pressure of a cycle tire with...Ch. 13.3 - Find the absolute pressure in a hydraulic jack...Ch. 13.4 - A metal alloy weighs 81.0 lb in air and 68.0 lb...Ch. 13.4 - A piece of metal weighs 67.0 N in air and 62.0 N...Ch. 13.4 - A rock weighs 25.7 N in air and 21.8 N in water....Ch. 13.4 - A metal bar weighs 455 N in air and 437 N in...Ch. 13.4 - A rock displaces 1.21 ft3 of water. What is the...Ch. 13.4 - A metal displaces 16.8 m3 of water. Find the...Ch. 13.4 - A metal casting displaces 327 cm3 of water. Find...Ch. 13.4 - A piece of metal displaces 657 cm3 of water. Find...Ch. 13.4 - A metal casting displaces 2.12 ft3 of alcohol....Ch. 13.4 - A metal cylinder displaces 515 cm3 of gasoline....Ch. 13.4 - A 75.0-kg rock lies at the bottom of a pond. Its...Ch. 13.4 - A 125-lb rock lies at the bottom of a pond. Its...Ch. 13.4 - A flat-bottom river barge is 30.0 ft wide, 85.0 ft...Ch. 13.4 - A flat-bottom river barge Is 12.0 m wide, 30.0 m...Ch. 13.4 - What is the volume (in m3) of the water displaced...Ch. 13.4 - A lifeguard swims with her head just above the...Ch. 13.4 - An underwater camera weighing 1250 N in air is...Ch. 13.5 - Water flows through a hose of diameter 3.90 cm at...Ch. 13.5 - Prob. 2PCh. 13.5 - Water flows from a pipe at 650 L/min. (a) What is...Ch. 13.5 - Water flaws through a pipe of diameter 8.00 cm at...Ch. 13.5 - A pump is rated to deliver 50.0 gal/min. Find the...Ch. 13.5 - Prob. 6PCh. 13.5 - What is the diameter of a pipe in which water...Ch. 13.5 - A garden hose is used to fill a bucket in 30.0 s....Ch. 13.5 - A liquid flows through a pipe with a diameter of...Ch. 13.5 - A pipe system with a radius of 0.060 m has a...Ch. 13 - The force applied to a unit area is called a....Ch. 13 - Prob. 2RQCh. 13 - For an incompressible fluid, the flow rate is a....Ch. 13 - Bernoullis principle states that for horizontal...Ch. 13 - Bernoulli's principle explains a. curving...Ch. 13 - What is the metric unit for pressure?Ch. 13 - In your own words, define pressure.Ch. 13 - In your own words, state how to find the force...Ch. 13 - In your own words, state the hydraulic principle.Ch. 13 - Describe why a ship floats.Ch. 13 - Describe how a rotating baseball follows a curved...Ch. 13 - How does an airplane wing provide lift?Ch. 13 - What is the difference between streamline and...Ch. 13 - Give an example of how Archimedes principle...Ch. 13 - Prob. 15RQCh. 13 - Is the pressure on a small piston different from...Ch. 13 - On what does the total force exerted by a liquid...Ch. 13 - Why must the thickness of a dam be greater at the...Ch. 13 - Is the hydraulic piston in the master brake...Ch. 13 - Prob. 20RQCh. 13 - Find the pressure (in kPa) at the bottom of a...Ch. 13 - Find the depth in a lake at which the pressure is...Ch. 13 - Find the height of a water column when the...Ch. 13 - What is the total force exerted on the bottom of a...Ch. 13 - Find the water pressure (in kPa) at a point 35.0 m...Ch. 13 - Find the total force on the bottom of a...Ch. 13 - Find the total force on the side of a cylindrical...Ch. 13 - Find the total force on the side of a rectangular...Ch. 13 - What must the water pressure (in kPa) be on the...Ch. 13 - What water pressure must a pump that is located on...Ch. 13 - A submarine is submerged to a depth of 3150 ft in...Ch. 13 - The area of the large piston in a hydraulic jack...Ch. 13 - The MA of a hydraulic jack is 324. What force must...Ch. 13 - The pistons of a hydraulic press have radii of...Ch. 13 - Find the absolute pressure in a bicycle tire with...Ch. 13 - Find the gauge pressure of a tire with an absolute...Ch. 13 - Find the gauge pressure of a tank whose absolute...Ch. 13 - A rock weighs 55.4 N in air and 52.1 N in water....Ch. 13 - A metal displaces 643 cm3 of water. Find the...Ch. 13 - A rock displaces 314 cm3 of alcohol. Find the...Ch. 13 - A flat-bottom barge is 22.3 ft wide, 87.5 ft long,...Ch. 13 - Water flows through a hose of diameter 3.00 cm at...Ch. 13 - Water flows through a 13.0-cm-diameter fire hose...Ch. 13 - An aquariums main tank holds 200,000 gal or 758 m3...Ch. 13 - The piston in a master cylinder has a radius of...Ch. 13 - A crane that can lift a maximum of 9000 N is...Ch. 13 - Wind tunnels are used to measure the aerodynamic...Ch. 13 - A flexible hose with inside radius 0.250 in. leads...
Additional Science Textbook Solutions
Find more solutions based on key concepts
39. A 3.0-cm-tall object is 45 cm in front of a concave mirror that has a 25 cm focal length.
College Physics: A Strategic Approach (3rd Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
Why is petroleum jelly used in the hanging-drop procedure?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
If decomposers usually grow faster and decompose material more quickly in warmer ecosystems why is decompositio...
Campbell Biology (11th Edition)
16. A 200 g mass attached to a horizontal spring oscillates at a frequency of 2.0 Hz. At , the mass is at and ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem Five. An object simple harmonic motion as described by the figure. 10.) Find the angular frequency in rad/s. x (cm) 4.00 NA 2.00 (A) 0.393 (B) 0.430 (C) 0.803 (D) 0.234 (E) 0.157 0.00 4 8 11.) Find the maximum acceleration in cm/s². -2.00 (A) 0.186 (B) 0.428 (C) 0.617 (D) 0.397 (E) 0.987 -4.00 1(s) 12 16 12.) Find the acceleration (in cm/s²) when t = 6.80 s. (A) 0.159 (B) 0.732 (C) 0.550 13.) Find the time (in s) when the position is a quarter of the amplitude. (A) 7.56 (B) 0.56 (C) 1.18 (D) 0.297 (E) 0.452 (D) 3.36 (E) 4.52 14.) If the graph represents a pendulum with a length of 1.40 m that is located on a space station, find the gravitational acceleration on the space station (in m/s²). (A) 0.182 (B) 0.499 (C) 0.357 (D) 0.973 (E) 0.216 15.) If the graph represents a spring-block system with a spring constant that is 11.6 N/m, find the mass of the block in kg. (A) 75.2 (B) 68.7 (C) 82.5 (D) 24.7 (E) 54.6arrow_forwardProblem Three. The surface of the Sun is approximately 5,850 K. The average surface temperature of Mars is approximately 210 K. 7.) Find the entropy change of the system (in units of J/K) when 7,000 J of energy is transferred by heat from the Sun to Mars. (B) 32.1 (A) 25.4 (C) 24.2 (D) 19.1 (E) 21.8 5001arrow_forwardProblem One. There are 4.0 moles of an ideal gas contained at 273 K. A piston is used to compress the gas into a new volume which is a quarter of the old volume in an isothermal process. 1.) Find the work done on the gas. Give an answer in kJ. (A)-6.3 (D) 6.3 (B) 13 (E)-13 (C) 8.7 2.) If it requires 84.0 kJ to achieve the process described above, find the efficiency percent of this process. (A) 93 (B) 80 (C) 19 (D) 15 (E) 53arrow_forward
- Problem Six. Two trains on separate tracks move away from each other. Train A has a speed of 156 km/h; train B, a speed of 72.0 km/h. Train B blows its horn, emitting a frequency of 400 Hz. 16.) Find the frequency (in Hz) heard by the engineer on Train A. (A) 536 (B) 476 (C) 543 (D) 226 (E) 330 17.) If the train lowers the volume of its horn by 6.0 decibels, by what has the intensity decreased by? (A) 0.25 (B) 0.33 (C) 0.51 (D) 0.62 (E) 0.76 18.) If an observer hears the train horn and then moves to a location where it's one fourth as loud, by what factor did the observer's distance from the train change by? (A) √2 (B) 2 (C) 4 (D) √2 (E) 6 19.) If the temperature of the air is doubled, find what factor the speed of the sound in air changes by. (A) 4 (B) 1/4 (C) 2 (D) √√2 (E)arrow_forward7. A skier starts from rest at the top of each of the hills shown in the figure below. On which hill will the skier have the highest speed at the bottom if we ignore friction: (a), (b), (c), (d), or (e)? (a) (b) (c) (d) 8. Answer Conceptual Question 7 (above) assuming a small amount of friction.arrow_forwardI need help with part C using info provided above part a.arrow_forward
- A small ball of mass M is attached to the end of a uniform rod of equal mass M and length L that is pivoted at the top (see figure below). P Pivot M i (a) Determine the tension in the rod at the pivot. (Use the following as necessary: M, g, L, and y.) F pivot = 2.M.g (b) Determine the tension in the rod at the point P when the system is stationary. (Use the following as necessary: M, g, L, and y.) Fp = M.g. ·(1+ ž) (c) Calculate the period of oscillation for small displacements from equilibrium. (Use the following as necessary: M, g, L, and y.) T= 4. Π 3 L 2. g (d) Determine this period (in s) for L = 2.08 m. 1.93 Your response differs from the correct answer by more than 10%. Double check your calculations. s (e) What If? What is the percentage difference between the period of this system compared to the period of a simple pendulum in which a ball of mass M is pivoted at the end of a massless rod of length L? simple x 100% 33.4 Tsystem T simple × %arrow_forwardAn electron with kinetic energy K is traveling along the positive x-axis, which is along the axis of a cathode-ray tube, as shown in the figure. There is an electric field E = 15.0 × 104 N/C pointed in the positive y-direction between the deflection plates, which are 0.0600 m long and are separated by 0.0200 m. Determine the minimum kinetic energy Kmin the electron can have and still avoid colliding with one of the plates. Kmin = 12 Ē L d x Jarrow_forwardA small 2.85 g plastic ball that has a charge q = 1.75 C is suspended by a string that has a length L = 1.00 m in a uniform electric field, as shown in the figure. If the ball is in equilibrium when the string makes a 0 = 9.80° angle with the vertical, what is the electric field strength E? | L E = N/C | Ꮎ q Ēarrow_forward
- A less than youthful 80.6 kg physics professor decides to run the 26.2 mile (42.195 km) Los Angeles Marathon. During his months of training, he realizes that one important component in running a successful marathon is carbo-loading, the consumption of a sufficient quantity of carbohydrates prior to the race that the body can store as glycogen to burn during the race. The typical energy requirement for runners is 1 kcal/km per kilogram of body weight, and each mole of oxygen intake allows for the release of 120 kcal of energy by oxidizing (burning) glycogen. (a) If the professor finishes the marathon in 5:15:00 h, what is the professor's oxygen intake rate, in liters per minute, during the race if he metabolizes all of the carbo-loaded glycogen during the race and the ambient temperature is 21.5°C? 2.02 × Read the problem statement again carefully. Is the air at standard temperature and pressure during the marathon? How would this affect the volume of 1 mol of oxygen? L/min (b) The…arrow_forwardYou are using a microscope to view a dust particle suspended in a drop of water on a microscope slide. As water molecules bombard the particle, it "jitters" about in a random motion (Brownian motion). The particle's average kinetic energy is the same as 3 that of a molecule in an ideal gas (K = The particle (assumed to be spherical) has a density of 350 kg/m³ in water at 23°C. 2 BT). (a) If the particle has a diameter d, determine an expression for its rms speed in terms of the diameter d. (Enter your answer as a multiple of d−3/2. Assume v is in m/s and d-3/2 is in m−3/2. Do not include units in your answer.) rms V. = rms rms Obtain an expression for v by equating the expression for the kinetic energy of the particle in terms of v obtain an expression for the mass of the particle in terms of its diameter. d-3/2 rms to the expression for the average kinetic energy of a molecule. Knowing the density of the particle and assuming it is a sphere, we can (b) Assuming the particle moves at a…arrow_forwardYou are watching a new bridge being built near your house. You notice during the construction that two concrete spans of the bridge of total length L; = 270 m are placed end to end so that no room is allowed for expansion (figure (a)). In the opening storyline for the thermodynamics chapter, we talked about buckling sidewalks. The same thing will happen with spans on bridges if allowance is not made for expansion (figure (b)). You want to warn the construction crew about this dangerous situation, so you calculate the height y to which the spans will rise when they buckle in response to a temperature increase of AT = 19.0°C. a b T T+AT y = Ider Enter a number. made by one span, with its thermally expanded length as the hypotenuse.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY