Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
8th Edition
ISBN: 9781305079373
Author: William L. Masterton, Cecile N. Hurley
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
100%
Chapter 13, Problem 9QAP

Using the Brønsted-Lowry model, write equations to show why the following species behave as weak acids in water.

(a) Ni(H2O)5OH+(b) Al(H2O)63+(c) H2S

(d) HPO42-(e) HClO2 (e) Cr(H2O)5(OH)+

Expert Solution
Check Mark
Interpretation Introduction

(a)

Interpretation:

The equation to show the acidic nature of the given species in water according to the Bronsted-Lowry model should be written.

Concept introduction:

According Bronsted-Lowry acid and base theory, acids are substance which loses protons H+ to form conjugate base and bases are substances which accepts protons to from conjugate acid.

For example:

HAH++A

Here, HA is an acid as it donates a proton to form A a conjugate base.

Similarly,

A+H+HA

Here, A is a base as it accepts a proton to from HA which is a conjugate acid.

Answer to Problem 9QAP

Ni(H2O)5OH++H2ONi(H2O)5O+H3O+

Explanation of Solution

The given species is Ni(H2O)5OH+.

On reaction with water, it can act as an acid by donating hydrogen ion to the water. The reaction is shown as follows:

Ni(H2O)5OH++H2ONi(H2O)5O+H3O+

In the above reaction, Ni(H2O)5OH+ acts as an acid, H2O acts as a base, Ni(H2O)5O is a conjugate base and H3O+ is a conjugate acid.

Expert Solution
Check Mark
Interpretation Introduction

(b)

Interpretation:

The equation to show the acidic nature of the given species in water according to the Bronsted -Lowry model should be written.

Concept introduction:

According Bronsted-Lowry acid and base theory, acids are substance which loses protons H+ to form conjugate base and bases are substances which accepts protons to from conjugate acid.

For example:

HAH++A

Here, HA is an acid as it donates a proton to form A a conjugate base.

Similarly,

A+H+HA

Here, A is a base as it accepts a proton to from HA which is a conjugate acid.

Answer to Problem 9QAP

Al(H2O)63++H2OAl(H2O)52+(OH)+H3O+

Explanation of Solution

The given species is Al(H2O)63+.

On reaction with water, it can act as an acid by donating hydrogen ion to the water. The reaction is shown as follows:

Al(H2O)63++H2OAl(H2O)52+(OH)+H3O+

In the above reaction, Al(H2O)63+ acts as an acid, H2O acts as a base, Al(H2O)52+(OH) is a conjugate base and H3O+ is a conjugate acid.

Expert Solution
Check Mark
Interpretation Introduction

(c)

Interpretation:

The equation to show the acidic nature of the given species in water according to the Bronsted-Lowry model should be written.

Concept introduction:

According Bronsted-Lowry acid and base theory, acids are substance which loses protons H+ to form conjugate base and bases are substances which accepts protons to from conjugate acid.

For example:

HAH++A

Here, HA is an acid as it donates a proton to form A a conjugate base.

Similarly,

A+H+HA

Here, A is a base as it accepts a proton to from HA which is a conjugate acid.

Answer to Problem 9QAP

H2S+H2OHS+H3O+

Explanation of Solution

The given species is H2S.

On reaction with water, it can act as an acid by donating hydrogen ion to the water. The reaction is shown as follows:

H2S+H2OHS+H3O+

In the above reaction, H2S acts as an acid, H2O acts as a base, HS is a conjugate base and H3O+ is a conjugate acid.

Expert Solution
Check Mark
Interpretation Introduction

(d)

Interpretation:

The equation to show the acidic nature of the given species in water according to the Bronsted -Lowry model should be written.

Concept introduction:

According Bronsted-Lowry acid and base theory, acids are substance which loses protons H+ to form conjugate base and bases are substances which accepts protons to from conjugate acid.

For example:

HAH++A

Here, HA is an acid as it donates a proton to form A a conjugate base.

Similarly,

A+H+HA

Here, A is a base as it accepts a proton to from HA which is a conjugate acid.

Answer to Problem 9QAP

HPO42+H2OPO43+H3O+

Explanation of Solution

The given species is as follows:

HPO42

On reaction with water, it can act as an acid by donating hydrogen ion to the water. The reaction is shown as follows:

HPO42+H2OPO43+H3O+

In the above reaction, HPO42 acts as an acid, H2O acts as a base, PO43 is a conjugate base and H3O+ is a conjugate acid.

Expert Solution
Check Mark
Interpretation Introduction

(e)

Interpretation:

The equation to show the acidic nature of the given species in water according to the Bronsted -Lowry model should be written.

Concept introduction:

According Bronsted-Lowry acid and base theory, acids are substance which loses protons H+ to form conjugate base and bases are substances which accepts protons to from conjugate acid.

For example:

HAH++A

Here, HA is an acid as it donates a proton to form A a conjugate base.

Similarly,

A+H+HA

Here, A is a base as it accepts a proton to from HA which is a conjugate acid.

Answer to Problem 9QAP

HClO2+H2OClO2+H3O+

Explanation of Solution

The given species is as follows:

HClO2

On reaction with water, it can act as an acid by donating hydrogen ion to the water. The reaction is shown as follows:

HClO2+H2OClO2+H3O+

In the above reaction, HClO2 acts as an acid, H2O acts as a base, ClO2 is a conjugate base and H3O+ is a conjugate acid.

Expert Solution
Check Mark
Interpretation Introduction

(f)

Interpretation:

The equation to show the acidic nature of the given species in water according to the Bronsted-Lowry model should be written.

Concept introduction:

According Bronsted-Lowry acid and base theory, acids are substance which loses protons H+ to form conjugate base and bases are substances which accepts protons to from conjugate acid.

For example:

HAH++A

Here, HA is an acid as it donates a proton to form A a conjugate base.

Similarly,

A+H+HA

Here, A is a base as it accepts a proton to from HA which is a conjugate acid.

Answer to Problem 9QAP

Cr(H2O)5(OH)++H2OCr(H2O)5O+H3O+

Explanation of Solution

The given species is as follows:

Cr(H2O)5(OH)+

On reaction with water, it can act as an acid by donating hydrogen ion to the water. The reaction is shown as follows:

Cr(H2O)5(OH)++H2OCr(H2O)5O+H3O+

In the above reaction, Cr(H2O)5(OH)+ acts as an acid, H2O acts as a base, Cr(H2O)5O is a conjugate base and H3O+ is a conjugate acid.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 13 Solutions

Chemistry: Principles and Reactions

Ch. 13 - Using the Brønsted-Lowry model, write an equation...Ch. 13 - Prob. 12QAPCh. 13 - Find the pH of solutions with the following[ H+ ]....Ch. 13 - Find the pH of solutions with the following[ H+ ]....Ch. 13 - Calculate H+ and OH- and in solutions with the...Ch. 13 - Calculate [H+] and [OH-] in solutions with the...Ch. 13 - Complete the following table for solutions at 25C.Ch. 13 - Complete the following table for solutions at 25C.Ch. 13 - Solution 1 has [ H+ ]=1.7102 M. Solution 2 has [...Ch. 13 - Solution R has pH 13.42. Solution Q has [ OH...Ch. 13 - Consider three solutions, R, Z, and Q. •...Ch. 13 - Solution A has a pH of 12.32. Solution B has [H+]...Ch. 13 - Unpolluted rain water has a pH of about 5.5. Acid...Ch. 13 - Most cola soft drinks have a pH of 3.1. Green tea...Ch. 13 - Find [OH-] and the pH of the following solutions....Ch. 13 - Find [H+] and the pH of the following solutions....Ch. 13 - Find [OH+], [OH-] and the pH of the following...Ch. 13 - Find [OH-], [H+], and the pH of the following...Ch. 13 - How many grams of HI should be added to 265 mL of...Ch. 13 - What is the pH of a solution obtained by adding...Ch. 13 - What is the pH of a solution obtained by adding...Ch. 13 - What is the pH of a solution obtained by mixing...Ch. 13 - Write the ionization equation and the Ka for each...Ch. 13 - Write the ionization equation and the Ka...Ch. 13 - Calculate Ka for the weak acids that have the...Ch. 13 - Prob. 36QAPCh. 13 - Prob. 37QAPCh. 13 - Consider these acids (a) Arrange the acids in...Ch. 13 - Rank the following solutions in order of...Ch. 13 - Rank the following acids (M=0.10)in order of...Ch. 13 - Prob. 41QAPCh. 13 - Rank the solutions in Questions 40 in order of...Ch. 13 - The pH of a 0.129 M solution of a weak acid, HB,...Ch. 13 - The pH of a 2.642 M solution of a weak acid, HB,...Ch. 13 - Paraminobenzene (PABA), HC7H6NO2, is used in some...Ch. 13 - Acetaminophen, HC8H8NO2 (MM=151.17g/mol), is the...Ch. 13 - Caproic acid, HC6H11O2, is found in coconut oil...Ch. 13 - Barbituric acid, HC4H3N2O3, is used to prepare...Ch. 13 - When aluminum chloride dissolves in water,...Ch. 13 - Using the Ka values in Table 13.2, calculate the...Ch. 13 - Barbituric acid, HC4H3N2O3, is used to prepare...Ch. 13 - Penicillin(MM=356g/mol), an antibiotic often used...Ch. 13 - Gallic acid, HC7H5O5, an ingredient in some...Ch. 13 - Anisic acid (K a=3.38105) is found in anise seeds...Ch. 13 - Phenol, once known as carbolic acid, HC6H5O, is a...Ch. 13 - Benzoic acid (K a=6.6105)is present in many...Ch. 13 - Chromic acid, H2CrO4, is commonly obtained by...Ch. 13 - Consider citric acid, H3C6H5O7, added to many soft...Ch. 13 - Consider a 0.45 M solution of ascorbic...Ch. 13 - Consider a 0.33 M solution of the diprotic acid...Ch. 13 - Phthalic acid H2C8H4O4, is a diprotic acid. It is...Ch. 13 - Selenious acid, H2SeO3, is primarily used to...Ch. 13 - Write the ionization expression and the Kb...Ch. 13 - Follow the instructions for Question 63 for the...Ch. 13 - Prob. 65QAPCh. 13 - Follow the directions of Question 65 for the...Ch. 13 - Using the equilibrium constants listed in Table...Ch. 13 - Using the equilibrium constants listed in Table...Ch. 13 - Find the value of Kb for the conjugate base of the...Ch. 13 - Find the values of Kb for the conjugate bases of...Ch. 13 - Determine [OH-], pOH and pH of a 0.28 M aqueous...Ch. 13 - Determine the [OH-] and pH of a 0.72 M solution of...Ch. 13 - Codeine (Cod), a powerful and addictive...Ch. 13 - Consider pyridine, C5H5N, a pesticide and deer...Ch. 13 - A solution of baking soda, NaHCO3, has a pH of...Ch. 13 - A solution of sodium cyanide, NaCN, has a pH of...Ch. 13 - Write formulas for two salts that (a) contain Ni3+...Ch. 13 - Write formulas for two salts that (a) contain NH4+...Ch. 13 - State whether 1 M solutions of the following salts...Ch. 13 - State whether 1 M solutions of the following salts...Ch. 13 - Write net ionic equations to explain the acidity...Ch. 13 - Prob. 82QAPCh. 13 - Arrange the following aqueous 0.1 M solutions in...Ch. 13 - Arrange the following aqueous 0.1 M solutions in...Ch. 13 - Unclassified At 25C, a 0.20 M solution of...Ch. 13 - Prob. 86QAPCh. 13 - There are 324 mg of acetylsalicylic acid...Ch. 13 - A student is asked to bubble enough ammonia gas...Ch. 13 - Prob. 89QAPCh. 13 - A student prepares 455 mL of a KOH solution, but...Ch. 13 - Consider the process H2O H+(aq)+OH(aq)H=55.8kJ (a)...Ch. 13 - Household bleach is prepared by dissolving...Ch. 13 - A tablet with a mass of 4.08 g contains 71.2%...Ch. 13 - Consider a weak organic base (nonelectrolyte) with...Ch. 13 - Prob. 95QAPCh. 13 - Which of the following is/are true regarding a 0.1...Ch. 13 - Which of the following is/are true about a 0.10 M...Ch. 13 - Consider the following six beakers. All have 100...Ch. 13 - Each box represents an acid solution at...Ch. 13 - Each box represents an acid solution at...Ch. 13 - Prob. 101QAPCh. 13 - You are asked to determine whether an unknown...Ch. 13 - What is the pH of a 0.020 M solution of H2SO4? You...Ch. 13 - Prob. 104QAPCh. 13 - What is the pH of a solution obtained by mixing...Ch. 13 - A solution is made up of 273 mL of 0.164 M HNO3...Ch. 13 - What is the freezing point of vinegar, which is an...Ch. 13 - Prob. 108QAPCh. 13 - Consider two weak acids, HA (MM=138g/mol)and HB...Ch. 13 - Consider an aqueous solution of a weak base, NaB...
Knowledge Booster
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Chemistry: Principles and Reactions
    Chemistry
    ISBN:9781305079373
    Author:William L. Masterton, Cecile N. Hurley
    Publisher:Cengage Learning
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • General, Organic, and Biological Chemistry
    Chemistry
    ISBN:9781285853918
    Author:H. Stephen Stoker
    Publisher:Cengage Learning
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
  • Chemistry: Principles and Reactions
    Chemistry
    ISBN:9781305079373
    Author:William L. Masterton, Cecile N. Hurley
    Publisher:Cengage Learning
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    General, Organic, and Biological Chemistry
    Chemistry
    ISBN:9781285853918
    Author:H. Stephen Stoker
    Publisher:Cengage Learning
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY