BuyFindarrow_forward

Multivariable Calculus

8th Edition
James Stewart
ISBN: 9781305266643

Solutions

Chapter
Section
BuyFindarrow_forward

Multivariable Calculus

8th Edition
James Stewart
ISBN: 9781305266643
Textbook Problem

(a) Find the arc length function for the curve measured from the point P in the direction of increasing t and then reparametrize the curve with respect to arc length starting from P. and (b) find the point 4 units along the curve (in the direction of increasing t) from P.

14. r ( t ) = e t sin t   i + e t cos t   j + 2 e t   k P (0, 1,  2 )

(a)

To determine

To find: The arc length function for the curved measured equation r(t)=etsinti+etcostj+2etk from the point P(0,1,2).

Explanation

Given data:

r(t)=etsinti+etcostj+2etk,P(0,1,2).

Formula used:

Write the expression to find the arc length function of the curve r(t).

s(t)=at|r(u)|du (1)

Write the expression to find length of the curve L for the vector r(t).

L=ab|r(t)|dt (2)

Here,

r(t) is the tangent vector, which is the derivative of vector r(t),

s(t) is denoted as arc length function, and

[a,b] is parameter interval.

Find the tangent vector r(t) by differentiating each component of the vector r(t) as follows.

ddt[r(t)]=ddt(etsinti+etcostj+2etk)

r(t)=ddt(etsint),ddt(etcost),ddt(2et) (3)

Write the following formula to compute the expression for r(t).

ddt(etsint)i=et(cost+sint)iddt(etcost)j=et(sintcost)jddt(2et)k=2etkddt(constant)=0

Apply the corresponding formula in equation (3) to find r(t).

r(t)=ddt(etsint),ddt(etcost),ddt(2et)

r(t)=et(cost+sint),et(sintcost),2et (4)

Take magnitude on both sides of equation (4)

(b)

To determine

To find: The point 4 units along the curve from P.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 13 Solutions

Show all chapter solutions add
Sect-13.1 P-11ESect-13.1 P-12ESect-13.1 P-13ESect-13.1 P-14ESect-13.1 P-15ESect-13.1 P-16ESect-13.1 P-17ESect-13.1 P-18ESect-13.1 P-19ESect-13.1 P-20ESect-13.1 P-21ESect-13.1 P-22ESect-13.1 P-23ESect-13.1 P-24ESect-13.1 P-25ESect-13.1 P-26ESect-13.1 P-27ESect-13.1 P-28ESect-13.1 P-29ESect-13.1 P-30ESect-13.1 P-31ESect-13.1 P-32ESect-13.1 P-38ESect-13.1 P-39ESect-13.1 P-40ESect-13.1 P-41ESect-13.1 P-42ESect-13.1 P-43ESect-13.1 P-44ESect-13.1 P-45ESect-13.1 P-46ESect-13.1 P-49ESect-13.1 P-50ESect-13.1 P-53ESect-13.2 P-1ESect-13.2 P-2ESect-13.2 P-3ESect-13.2 P-4ESect-13.2 P-5ESect-13.2 P-6ESect-13.2 P-7ESect-13.2 P-8ESect-13.2 P-9ESect-13.2 P-10ESect-13.2 P-11ESect-13.2 P-12ESect-13.2 P-13ESect-13.2 P-14ESect-13.2 P-15ESect-13.2 P-16ESect-13.2 P-17ESect-13.2 P-18ESect-13.2 P-19ESect-13.2 P-20ESect-13.2 P-21ESect-13.2 P-22ESect-13.2 P-23ESect-13.2 P-24ESect-13.2 P-25ESect-13.2 P-26ESect-13.2 P-27ESect-13.2 P-28ESect-13.2 P-29ESect-13.2 P-30ESect-13.2 P-31ESect-13.2 P-32ESect-13.2 P-33ESect-13.2 P-34ESect-13.2 P-35ESect-13.2 P-36ESect-13.2 P-37ESect-13.2 P-38ESect-13.2 P-39ESect-13.2 P-40ESect-13.2 P-41ESect-13.2 P-42ESect-13.2 P-43ESect-13.2 P-44ESect-13.2 P-45ESect-13.2 P-46ESect-13.2 P-47ESect-13.2 P-48ESect-13.2 P-49ESect-13.2 P-50ESect-13.2 P-51ESect-13.2 P-52ESect-13.2 P-53ESect-13.2 P-54ESect-13.2 P-55ESect-13.2 P-56ESect-13.2 P-57ESect-13.2 P-58ESect-13.3 P-1ESect-13.3 P-2ESect-13.3 P-3ESect-13.3 P-4ESect-13.3 P-5ESect-13.3 P-6ESect-13.3 P-7ESect-13.3 P-8ESect-13.3 P-9ESect-13.3 P-10ESect-13.3 P-11ESect-13.3 P-12ESect-13.3 P-13ESect-13.3 P-14ESect-13.3 P-15ESect-13.3 P-16ESect-13.3 P-17ESect-13.3 P-18ESect-13.3 P-19ESect-13.3 P-20ESect-13.3 P-21ESect-13.3 P-22ESect-13.3 P-23ESect-13.3 P-24ESect-13.3 P-25ESect-13.3 P-26ESect-13.3 P-27ESect-13.3 P-28ESect-13.3 P-29ESect-13.3 P-30ESect-13.3 P-31ESect-13.3 P-32ESect-13.3 P-33ESect-13.3 P-38ESect-13.3 P-39ESect-13.3 P-42ESect-13.3 P-43ESect-13.3 P-44ESect-13.3 P-45ESect-13.3 P-46ESect-13.3 P-47ESect-13.3 P-48ESect-13.3 P-49ESect-13.3 P-50ESect-13.3 P-53ESect-13.3 P-55ESect-13.3 P-56ESect-13.3 P-58ESect-13.3 P-59ESect-13.3 P-60ESect-13.3 P-62ESect-13.3 P-63ESect-13.3 P-64ESect-13.3 P-65ESect-13.3 P-66ESect-13.3 P-67ESect-13.4 P-1ESect-13.4 P-3ESect-13.4 P-4ESect-13.4 P-5ESect-13.4 P-6ESect-13.4 P-7ESect-13.4 P-8ESect-13.4 P-9ESect-13.4 P-10ESect-13.4 P-11ESect-13.4 P-12ESect-13.4 P-13ESect-13.4 P-14ESect-13.4 P-15ESect-13.4 P-16ESect-13.4 P-19ESect-13.4 P-20ESect-13.4 P-21ESect-13.4 P-22ESect-13.4 P-23ESect-13.4 P-24ESect-13.4 P-25ESect-13.4 P-26ESect-13.4 P-27ESect-13.4 P-28ESect-13.4 P-29ESect-13.4 P-30ESect-13.4 P-31ESect-13.4 P-32ESect-13.4 P-34ESect-13.4 P-35ESect-13.4 P-36ESect-13.4 P-37ESect-13.4 P-38ESect-13.4 P-39ESect-13.4 P-40ESect-13.4 P-41ESect-13.4 P-42ESect-13.4 P-44ESect-13.4 P-45ESect-13.4 P-46ECh-13 P-1RCCCh-13 P-2RCCCh-13 P-3RCCCh-13 P-4RCCCh-13 P-5RCCCh-13 P-6RCCCh-13 P-7RCCCh-13 P-8RCCCh-13 P-9RCCCh-13 P-1RQCh-13 P-2RQCh-13 P-3RQCh-13 P-4RQCh-13 P-5RQCh-13 P-6RQCh-13 P-7RQCh-13 P-8RQCh-13 P-9RQCh-13 P-10RQCh-13 P-11RQCh-13 P-12RQCh-13 P-13RQCh-13 P-14RQCh-13 P-1RECh-13 P-2RECh-13 P-3RECh-13 P-4RECh-13 P-5RECh-13 P-6RECh-13 P-7RECh-13 P-8RECh-13 P-9RECh-13 P-10RECh-13 P-11RECh-13 P-12RECh-13 P-13RECh-13 P-14RECh-13 P-15RECh-13 P-16RECh-13 P-17RECh-13 P-18RECh-13 P-19RECh-13 P-20RECh-13 P-21RECh-13 P-22RECh-13 P-23RECh-13 P-1PCh-13 P-2PCh-13 P-3PCh-13 P-4PCh-13 P-5PCh-13 P-6PCh-13 P-7PCh-13 P-8PCh-13 P-9P

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Convert the expressions in Exercises 6584 to power form. xy23

Finite Mathematics and Applied Calculus (MindTap Course List)

In Exercises 35-42, find functions f and g such that h = g f. (Note: The answer is not unique.) 36. h(x) = (3x...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Is the incenter always located in the interior of the triangle?

Elementary Geometry For College Students, 7e

Find the limit or show that it does not exist. limx[ln(1+x2)ln(1+x)]

Single Variable Calculus: Early Transcendentals

Prove the following identities. tanx2+cotx2=2cscx

Trigonometry (MindTap Course List)

The interval of convergence of is: [−1, 1] [−1, 1) (−1, 1] (−1, 1)

Study Guide for Stewart's Multivariable Calculus, 8th

True or False: In the definition of , the expression is interpreted as “the distance between f(x) and L is les...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th