BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

In Problems 17-24, use integration by parts to evaluate the integral. Note that evaluation may require integration by parts more than once.

x 3  ln  x  d x

To determine

To calculate: The value of the integral x3ln2xdx using integration by part.

Explanation

Given Information:

The provided integral is x3ln2xdx.

Formula used:

The formula for integration by parts is given by:

udv=uvvdu

Calculation:

Consider the provided integral:

x3ln2xdx

Now, split the integrand into two parts setting one part equal to u and another part equal to dv.

So, the values will be:

u=(lnx)2

And,

dv=x3dx

Then,

du=2lnxxdx

And,

v=x3dx=x44

Then, use the formula for integration by parts:

udv=uvvdu

To obtain,

x3ln2xdx=14x4(lnx)212x3lnxdx

Now, again split the second integrand into two parts setting one part equal to u and another part equal to dv

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 13 Solutions

Show all chapter solutions add
Sect-13.1 P-9ESect-13.1 P-10ESect-13.1 P-11ESect-13.1 P-12ESect-13.1 P-13ESect-13.1 P-14ESect-13.1 P-15ESect-13.1 P-16ESect-13.1 P-17ESect-13.1 P-18ESect-13.1 P-19ESect-13.1 P-20ESect-13.1 P-21ESect-13.1 P-22ESect-13.1 P-23ESect-13.1 P-24ESect-13.1 P-25ESect-13.1 P-26ESect-13.1 P-27ESect-13.1 P-28ESect-13.1 P-29ESect-13.1 P-30ESect-13.1 P-31ESect-13.1 P-32ESect-13.1 P-33ESect-13.1 P-34ESect-13.1 P-35ESect-13.1 P-36ESect-13.1 P-37ESect-13.1 P-38ESect-13.1 P-39ESect-13.1 P-40ESect-13.2 P-1CPSect-13.2 P-2CPSect-13.2 P-1ESect-13.2 P-2ESect-13.2 P-3ESect-13.2 P-4ESect-13.2 P-5ESect-13.2 P-6ESect-13.2 P-9ESect-13.2 P-10ESect-13.2 P-11ESect-13.2 P-12ESect-13.2 P-7ESect-13.2 P-8ESect-13.2 P-23ESect-13.2 P-24ESect-13.2 P-13ESect-13.2 P-14ESect-13.2 P-15ESect-13.2 P-16ESect-13.2 P-17ESect-13.2 P-18ESect-13.2 P-19ESect-13.2 P-20ESect-13.2 P-21ESect-13.2 P-22ESect-13.2 P-25ESect-13.2 P-26ESect-13.2 P-27ESect-13.2 P-28ESect-13.2 P-29ESect-13.2 P-30ESect-13.2 P-31ESect-13.2 P-32ESect-13.2 P-33ESect-13.2 P-34ESect-13.2 P-35ESect-13.2 P-36ESect-13.2 P-37ESect-13.2 P-38ESect-13.2 P-39ESect-13.2 P-40ESect-13.2 P-41ESect-13.2 P-42ESect-13.2 P-43ESect-13.2 P-44ESect-13.2 P-45ESect-13.2 P-46ESect-13.2 P-47ESect-13.2 P-48ESect-13.2 P-49ESect-13.2 P-50ESect-13.2 P-51ESect-13.2 P-52ESect-13.2 P-53ESect-13.2 P-54ESect-13.2 P-55ESect-13.2 P-56ESect-13.2 P-57ESect-13.2 P-58ESect-13.2 P-59ESect-13.2 P-60ESect-13.2 P-61ESect-13.2 P-62ESect-13.2 P-63ESect-13.2 P-64ESect-13.2 P-65ESect-13.2 P-66ESect-13.2 P-67ESect-13.2 P-68ESect-13.3 P-1CPSect-13.3 P-2CPSect-13.3 P-3CPSect-13.3 P-1ESect-13.3 P-2ESect-13.3 P-3ESect-13.3 P-4ESect-13.3 P-5ESect-13.3 P-6ESect-13.3 P-7ESect-13.3 P-8ESect-13.3 P-9ESect-13.3 P-10ESect-13.3 P-11ESect-13.3 P-12ESect-13.3 P-13ESect-13.3 P-14ESect-13.3 P-15ESect-13.3 P-16ESect-13.3 P-17ESect-13.3 P-18ESect-13.3 P-19ESect-13.3 P-20ESect-13.3 P-21ESect-13.3 P-22ESect-13.3 P-23ESect-13.3 P-24ESect-13.3 P-25ESect-13.3 P-26ESect-13.3 P-27ESect-13.3 P-28ESect-13.3 P-29ESect-13.3 P-30ESect-13.3 P-31ESect-13.3 P-32ESect-13.3 P-33ESect-13.3 P-34ESect-13.3 P-35ESect-13.3 P-36ESect-13.3 P-37ESect-13.3 P-38ESect-13.3 P-39ESect-13.3 P-40ESect-13.3 P-41ESect-13.3 P-42ESect-13.3 P-43ESect-13.3 P-44ESect-13.3 P-45ESect-13.3 P-46ESect-13.3 P-47ESect-13.3 P-48ESect-13.3 P-49ESect-13.3 P-50ESect-13.4 P-1CPSect-13.4 P-2CPSect-13.4 P-3CPSect-13.4 P-1ESect-13.4 P-2ESect-13.4 P-3ESect-13.4 P-4ESect-13.4 P-5ESect-13.4 P-6ESect-13.4 P-7ESect-13.4 P-8ESect-13.4 P-9ESect-13.4 P-10ESect-13.4 P-11ESect-13.4 P-12ESect-13.4 P-13ESect-13.4 P-14ESect-13.4 P-15ESect-13.4 P-16ESect-13.4 P-17ESect-13.4 P-18ESect-13.4 P-19ESect-13.4 P-20ESect-13.4 P-21ESect-13.4 P-22ESect-13.4 P-23ESect-13.4 P-24ESect-13.4 P-25ESect-13.4 P-26ESect-13.4 P-27ESect-13.4 P-28ESect-13.4 P-29ESect-13.4 P-30ESect-13.4 P-31ESect-13.4 P-32ESect-13.4 P-33ESect-13.4 P-34ESect-13.4 P-35ESect-13.4 P-36ESect-13.5 P-1CPSect-13.5 P-2CPSect-13.5 P-3CPSect-13.5 P-4CPSect-13.5 P-5CPSect-13.5 P-6CPSect-13.5 P-1ESect-13.5 P-2ESect-13.5 P-3ESect-13.5 P-4ESect-13.5 P-5ESect-13.5 P-6ESect-13.5 P-7ESect-13.5 P-8ESect-13.5 P-9ESect-13.5 P-10ESect-13.5 P-11ESect-13.5 P-12ESect-13.5 P-13ESect-13.5 P-14ESect-13.5 P-15ESect-13.5 P-16ESect-13.5 P-17ESect-13.5 P-18ESect-13.5 P-19ESect-13.5 P-20ESect-13.5 P-21ESect-13.5 P-22ESect-13.5 P-23ESect-13.5 P-24ESect-13.5 P-25ESect-13.5 P-26ESect-13.5 P-27ESect-13.5 P-28ESect-13.5 P-29ESect-13.5 P-30ESect-13.5 P-31ESect-13.5 P-32ESect-13.5 P-33ESect-13.5 P-34ESect-13.5 P-35ESect-13.5 P-36ESect-13.5 P-37ESect-13.5 P-38ESect-13.5 P-39ESect-13.5 P-40ESect-13.5 P-41ESect-13.5 P-42ESect-13.6 P-1CPSect-13.6 P-2CPSect-13.6 P-1ESect-13.6 P-2ESect-13.6 P-3ESect-13.6 P-4ESect-13.6 P-5ESect-13.6 P-6ESect-13.6 P-7ESect-13.6 P-8ESect-13.6 P-9ESect-13.6 P-10ESect-13.6 P-11ESect-13.6 P-12ESect-13.6 P-13ESect-13.6 P-14ESect-13.6 P-15ESect-13.6 P-16ESect-13.6 P-17ESect-13.6 P-18ESect-13.6 P-19ESect-13.6 P-20ESect-13.6 P-21ESect-13.6 P-22ESect-13.6 P-23ESect-13.6 P-24ESect-13.6 P-25ESect-13.6 P-26ESect-13.6 P-27ESect-13.6 P-28ESect-13.6 P-29ESect-13.6 P-30ESect-13.6 P-31ESect-13.6 P-32ESect-13.6 P-33ESect-13.6 P-34ESect-13.6 P-35ESect-13.6 P-36ESect-13.6 P-37ESect-13.6 P-38ESect-13.7 P-1CPSect-13.7 P-2CPSect-13.7 P-1ESect-13.7 P-2ESect-13.7 P-3ESect-13.7 P-4ESect-13.7 P-5ESect-13.7 P-6ESect-13.7 P-7ESect-13.7 P-8ESect-13.7 P-9ESect-13.7 P-10ESect-13.7 P-11ESect-13.7 P-12ESect-13.7 P-13ESect-13.7 P-14ESect-13.7 P-15ESect-13.7 P-16ESect-13.7 P-17ESect-13.7 P-18ESect-13.7 P-19ESect-13.7 P-20ESect-13.7 P-21ESect-13.7 P-22ESect-13.7 P-23ESect-13.7 P-24ESect-13.7 P-25ESect-13.7 P-26ESect-13.7 P-27ESect-13.7 P-28ESect-13.7 P-29ESect-13.7 P-30ESect-13.7 P-31ESect-13.7 P-32ESect-13.7 P-33ESect-13.7 P-34ESect-13.7 P-35ESect-13.7 P-36ESect-13.7 P-37ESect-13.7 P-38ESect-13.7 P-39ESect-13.7 P-40ESect-13.7 P-41ESect-13.7 P-42ESect-13.7 P-43ESect-13.7 P-44ESect-13.7 P-45ESect-13.7 P-47ESect-13.8 P-1CPSect-13.8 P-2CPSect-13.8 P-3CPSect-13.8 P-1ESect-13.8 P-2ESect-13.8 P-3ESect-13.8 P-4ESect-13.8 P-5ESect-13.8 P-6ESect-13.8 P-7ESect-13.8 P-8ESect-13.8 P-9ESect-13.8 P-10ESect-13.8 P-11ESect-13.8 P-12ESect-13.8 P-13ESect-13.8 P-14ESect-13.8 P-15ESect-13.8 P-16ESect-13.8 P-17ESect-13.8 P-18ESect-13.8 P-19ESect-13.8 P-20ESect-13.8 P-21ESect-13.8 P-22ESect-13.8 P-23ESect-13.8 P-24ESect-13.8 P-25ESect-13.8 P-26ESect-13.8 P-27ESect-13.8 P-28ESect-13.8 P-29ESect-13.8 P-30ESect-13.8 P-31ESect-13.8 P-32ESect-13.8 P-33ESect-13.8 P-34ECh-13 P-1RECh-13 P-2RECh-13 P-3RECh-13 P-4RECh-13 P-5RECh-13 P-6RECh-13 P-7RECh-13 P-8RECh-13 P-9RECh-13 P-10RECh-13 P-11RECh-13 P-12RECh-13 P-13RECh-13 P-14RECh-13 P-15RECh-13 P-16RECh-13 P-17RECh-13 P-18RECh-13 P-19RECh-13 P-20RECh-13 P-21RECh-13 P-22RECh-13 P-23RECh-13 P-24RECh-13 P-25RECh-13 P-26RECh-13 P-27RECh-13 P-28RECh-13 P-29RECh-13 P-30RECh-13 P-31RECh-13 P-32RECh-13 P-33RECh-13 P-34RECh-13 P-35RECh-13 P-36RECh-13 P-37RECh-13 P-38RECh-13 P-39RECh-13 P-40RECh-13 P-41RECh-13 P-42RECh-13 P-43RECh-13 P-44RECh-13 P-45RECh-13 P-46RECh-13 P-47RECh-13 P-48RECh-13 P-49RECh-13 P-50RECh-13 P-51RECh-13 P-53RECh-13 P-54RECh-13 P-55RECh-13 P-1TCh-13 P-2TCh-13 P-3TCh-13 P-4TCh-13 P-5TCh-13 P-6TCh-13 P-7TCh-13 P-8TCh-13 P-9TCh-13 P-10TCh-13 P-11TCh-13 P-12TCh-13 P-13TCh-13 P-14TCh-13 P-15TCh-13 P-16T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Use the guidelines of this section to sketch the curve. y = earctan x

Single Variable Calculus: Early Transcendentals, Volume I

In Exercises 8387, determine whether the statement is true or false. If it is true, explain why it is true. If ...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Solve for y in terms of x: 2x+2y=5

Elementary Technical Mathematics

Evaluate the indefinite integral. sec2tan3d

Single Variable Calculus: Early Transcendentals

Using a binomial series, the Maclaurin series for is:

Study Guide for Stewart's Multivariable Calculus, 8th

f(x) = x3 2x2 + x 1 has a local maximum at: a) 0 b) 1 c) 13 d) f has no local maxima

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th