Physics for Scientists and Engineers, Technology Update (No access codes included)
Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 14, Problem 14.15P

Review. The lank in Figure P14.15 is filled with water of depth d = 2.00 m. At the bottom of one sidewall is a rectangular hatch of height h = 1.00 m and width w = 2.00 in that is hinged at the top of the hatch, (a) Determine the magnitude of the force the water exerts on the hatch, (b) Find the magnitude of the torque exerted by the water about the hinges.

Chapter 14, Problem 14.15P, Review. The lank in Figure P14.15 is filled with water of depth d = 2.00 m. At the bottom of one

(a)

Expert Solution
Check Mark
To determine

The amount of force water exerts on the hatch.

Answer to Problem 14.15P

The amount of force water exerts on the hatch is 2.94×104N .

Explanation of Solution

Given info: The depth of water in the tank is 2.00m , the height of the rectangular hatch is 1.00m and the width of rectangular hatch is 2.00m .

Write the expression for the force exerted on the strip.

df=PdA (1)

Here,

dA is the area of the small strip on the hatch.

P is the pressure exerted on the strip.

Write the expression for pressure exerted on the strip.

P=ρgh

Here,

ρ is density of the water.

h is the depth of the water in the tank.

g is the acceleration due to gravity.

The area of the cross section of the strip is,

dA=wdh

Here,

w is the width of the rectangular strip.

dh is the strip height.

Substitute wdh for dA and ρgh for P in the equation (1).

dF=ρgh(wdh)

As, the pressure varies with the depth so the force exerted is also vary.

Write the expression for force exerted on the rectangular height,

dF=h1h1ρgh(wdh) (2)

Here,

h1 is the height of the rectangular hatch.

h2 is depth of the water in tank.

Substitute 2.00m for h2 and 1.00m for h1 in the equation (2).

dF=1.00m2.00mρgh(wdh)=ρgw(h22)1.00m2.00mF=32ρgw (3)

The density of the water is 1000kg/m3 and the acceleration due to gravity is 9.8m/s2 .

Substitute 1000kg/m3 for ρ , 9.8m/s2 for g and 2.00m for w in the equation (3).

F=32(1000kg/m3)(9.8m/s2)(2.00m)=2.94×104N

Conclusion:

Therefore, the amount of force water exerts on the hatch is 2.94×104N .

(b)

Expert Solution
Check Mark
To determine

The amount of the torque exerted by the water about the hinges.

Answer to Problem 14.15P

The amount of the torque exerted by the water about the hinges is 1.63×104Nm .

Explanation of Solution

Given info: The depth of water in the tank is 2.00m , the height of the rectangular hatch is 1.00m and the width of rectangular hatch is 2.00m .

Write the expression for the torque about the hinge.

τ=dF(h1.00m) (4)

Here,

dF is the force exerted on the rectangular hatch.

(h1.00m) is the distance from hinge to strip.

From part (a), the force exerted on the rectangular hatch is,

dF=ρgh(wdh)

Substitute ρgh(wdh) for dF in the equation (4).

τ=ρgh(wdh)(h1.00m)

Write the expression for the torque about the hinge,

τ=h1h2ρgh(wdh)(h1.00m) (5)

Substitute 1.00m for h1 and 2.00m for h2 in the equation (5).

τ=ρgw1.00m2.00m(h2h)dh=ρgw(h33h22)1.00m2.00m=56ρgw (6)

The density of the water is 1000kg/m3 and the acceleration due to gravity is 9.8m/s2 .

Substitute 1000kg/m3 for ρ , 9.8m/s2 for g and 2.00m for w in the equation (6).

τ=56(1000kg/m3)(9.8m/s2)(2.00m)=1.63×104Nm

Conclusion:

Therefore, the amount of the torque exerted by the water about the hinges is 1.63×104Nm .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 14 Solutions

Physics for Scientists and Engineers, Technology Update (No access codes included)

Ch. 14 - A solid iron sphere and a solid lead sphere of the...Ch. 14 - Prob. 14.7OQCh. 14 - One of the predicted problems due to global...Ch. 14 - A boat develops a leak and, after its passengers...Ch. 14 - A small piece of steel is tied to a block of wood....Ch. 14 - A piece of unpainted porous wood barely floats in...Ch. 14 - A person in a boat floating in a small pond throws...Ch. 14 - Rank the buoyant forces exerted on the following...Ch. 14 - A water supply maintains a constant rate of flow...Ch. 14 - A glass of water contains floating ice cubes. When...Ch. 14 - An ideal fluid flows through a horizontal pipe...Ch. 14 - When an object is immersed in a liquid at rest,...Ch. 14 - Two thin-walled drinking glasses having equal base...Ch. 14 - Because atmospheric pressure is about 105 N/m2 and...Ch. 14 - A fish rests on the bottom of a bucket of water...Ch. 14 - You are a passenger on a spacecraft. For your...Ch. 14 - Prob. 14.6CQCh. 14 - Prob. 14.7CQCh. 14 - If you release a ball while inside a freely...Ch. 14 - (a) Is the buoyant force a conservative force? (b)...Ch. 14 - All empty metal soap dish barely floats in water....Ch. 14 - Prob. 14.11CQCh. 14 - Prob. 14.12CQCh. 14 - Prob. 14.13CQCh. 14 - Does a ship float higher in the water of an inland...Ch. 14 - Prob. 14.15CQCh. 14 - Prob. 14.16CQCh. 14 - Prairie dogs ventilate their burrows by building a...Ch. 14 - Prob. 14.18CQCh. 14 - Prob. 14.19CQCh. 14 - A large man sits on a four-legged chair with his...Ch. 14 - Prob. 14.2PCh. 14 - A 50.0-kg woman wearing high-heeled shoes is...Ch. 14 - Estimate the total mass of the Earths atmosphere....Ch. 14 - Calculate the mass of a solid gold rectangular bar...Ch. 14 - (a) A wry powerful vacuum cleaner has a hose 2.86...Ch. 14 - The spring of the pressure gauge shown in Figure...Ch. 14 - The small piston of a hydraulic lift (Fig. P14.8)...Ch. 14 - What must be the contact area between a suction...Ch. 14 - A swimming pool has dimensions 30.0 m 10.0 m and...Ch. 14 - (a) Calculate the absolute pressure at the bottom...Ch. 14 - Prob. 14.12PCh. 14 - Prob. 14.13PCh. 14 - A container is filled to a depth of 20.0 cm with...Ch. 14 - Review. The lank in Figure P14.15 is filled with...Ch. 14 - Prob. 14.16PCh. 14 - Prob. 14.17PCh. 14 - Review. A solid sphere of brass (bulk modulus of...Ch. 14 - Normal atmospheric pressure is 1.013 103 Pa. The...Ch. 14 - The human brain and spinal cord are immersed in...Ch. 14 - Blaise Pascal duplicated Torricellis barometer...Ch. 14 - Prob. 14.22PCh. 14 - A backyard swimming pool with a circular base of...Ch. 14 - A tank with a flat bottom of area A and vertical...Ch. 14 - A table-tennis ball has a diameter of 3.80 cm and...Ch. 14 - Prob. 14.26PCh. 14 - A 10.0-kg block of metal measuring 12.0 cm by 10.0...Ch. 14 - A light balloon is filled with 400 m3 of helium at...Ch. 14 - A cube of wood having an edge dimension of 20.0 cm...Ch. 14 - The United States possesses the ten largest...Ch. 14 - A plastic sphere floats in water with 50.0% of its...Ch. 14 - A spherical vessel used for deep-sea exploration...Ch. 14 - A wooden block of volume 5.24 104 m3 floats in...Ch. 14 - The weight of a rectangular block of low-density...Ch. 14 - A large weather balloon whose mass is 226 kg is...Ch. 14 - A hydrometer is an instrument used to determine...Ch. 14 - Refer to Problem 16 and Figure P14.16. A...Ch. 14 - On October 21, 2001, Ian Ashpole of the United...Ch. 14 - How many cubic meters of helium are required to...Ch. 14 - Water flowing through a garden hose of diameter...Ch. 14 - A large storage tank, open at the top and filled...Ch. 14 - Prob. 14.42PCh. 14 - Prob. 14.43PCh. 14 - A village maintains a large tank with ail open...Ch. 14 - A legendary Dutch boy saved Holland by plugging a...Ch. 14 - Water falls over a dam of height h with a mass...Ch. 14 - Water is pumped up from the Colorado River to...Ch. 14 - In ideal flow, a liquid of density 850 kg/m3 moves...Ch. 14 - The Venturi tube discussed in Example 14.8 and...Ch. 14 - Review. Old Faithful Geyser in Yellowstone...Ch. 14 - An airplane is cruising al altitude 10 km. The...Ch. 14 - An airplane has a mass of 1.60 104 kg, and each...Ch. 14 - Prob. 14.53PCh. 14 - The Bernoulli effect can have important...Ch. 14 - Prob. 14.55PCh. 14 - Decades ago, it was thought that huge herbivorous...Ch. 14 - (a) Calculate the absolute pressure at an ocean...Ch. 14 - Prob. 14.58APCh. 14 - A spherical aluminum ball of mass 1.26 kg contains...Ch. 14 - Prob. 14.60APCh. 14 - Review. Figure P14.61 shows a valve separating a...Ch. 14 - The true weight of an object can be measured in a...Ch. 14 - Water is forced out of a fire extinguisher by air...Ch. 14 - Review. Assume a certain liquid, with density 1...Ch. 14 - Prob. 14.65APCh. 14 - Prob. 14.66APCh. 14 - Prob. 14.67APCh. 14 - A common parameter that can be used to predict...Ch. 14 - Evangelista Torricelli was the first person to...Ch. 14 - Review. With reference to the dam studied in...Ch. 14 - A 1.00-kg beaker containing 2.00 kg of oil...Ch. 14 - A beaker of mass mb containing oil of mass mu and...Ch. 14 - In 1983, the United States began coining the...Ch. 14 - Review. A long, cylindrical rod of radius r is...Ch. 14 - Prob. 14.75APCh. 14 - The spirit-in-glass thermometer, invented in...Ch. 14 - Prob. 14.77APCh. 14 - Review. In a water pistol, a piston drives water...Ch. 14 - Prob. 14.79APCh. 14 - The water supply of a building is fed through a...Ch. 14 - A U-tube open at both ends is partially filled...Ch. 14 - A woman is draining her fish tank by siphoning the...Ch. 14 - The hull of an experimental boat is to be lifted...Ch. 14 - Prob. 14.84APCh. 14 - An ice cube whose edges measure 20.0 mm is...Ch. 14 - Why is the following situation impossible? A barge...Ch. 14 - Show that the variation of atmospheric pressure...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY