Chemistry
Chemistry
13th Edition
ISBN: 9781259911156
Author: Raymond Chang Dr., Jason Overby Professor
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 14, Problem 14.44QP

The dissociation of molecular iodine into iodine atoms is represented as

I 2 ( g ) 2 I( g )

At 1000 K, the equilibrium constant Kc for the reaction is 3.80 × 10−5. Suppose you start with 0.0456 mole of I2 in a 2.30-L flask at 1000 K. What are the concentrations of the gases at equilibrium?

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

The equilibrium concentration of hydrogen and iodine gas has to be calculated.

Concept Introduction:

Equilibrium concentration: If Kc and the initial concentration for a reaction and calculate for both equilibrium concentration, and using the (ICE) chart and equilibrium constant and derived changes in respective reactants and products.

Equilibrium constant: Concentration of the products to the respective molar concentration of reactants it is called equilibrium constant. If the K value is less than one the reaction will move to the left side and the K values is higher (or) greater than one the reaction will move to the right side of reaction.

Heterogeneous equilibrium: This equilibrium reaction does not depend on the amounts of pure solid and liquid present, in other words heterogeneous equilibrium, substances are in different phases. 

Kp and Kc: This equilibrium constants of gaseous mixtures, these difference between the two constants is that Kc is defined by molar concentrations, whereas Kp is defined by the partial pressures of the gasses inside a closed system.

Vaporized equilibrium: This conversion of liquid in gaseous phase is known as vaporization process. At starting the rate of condensation is less than the rate of evaporation but as evaporation continues the concentration of gaseous molecule in the vapour phase increase.

Answer to Problem 14.44QP

The equilibriumconcentrations[I]=8.58×10-4Mand[I2]=0.0194M

Explanation of Solution

To find: The each reactant product equilibrium concentration should be identified given the gas phase reaction.

Write and Analyze the given gas phase chemical equilibrium reaction.

a).I2(g)2I(g)[DessociationReaction]

The given equilibrium reaction has a homogenous process, then the equilibrium constant can also be represented by Kp, were the Kp represents partial pressure. Then the product molecule partial pressure Chemistry, Chapter 14, Problem 14.44QP is derived in step-2.

To find: Calculate equilibrium concentration (Kp) values for given the statement of equilibrium reaction.

Calculate and analyze the (Kp) values at 10000C.

We derived here (Kp) values of (I2) dissociation reaction

First we derived the initial concentration of (I2) is

The initialconcentrationof(I2)=0.0456mol2.30L=0.0198Mhere the 1moleof(I2) dissocoatingto2 molesof (I)atomsLet(x)amount inmol/Lod(I2)dissociatedThe equilibrium concentrationof(I)atoms mustbe=2x

Here set up the (ICE) table Let (x) be the decrease in concentration of  (I2and2I)I2(g)2I(g)Initial (M): 0.01980.000Change (M):  -x+2xEqilibrium (M):(0.0198x)2x

We consider the equilibrium expression in terms of the equilibrium concentration.

The equilibrium constant solvefor(x)Kc=[I]2[I2][1]The(ICE)tablevaluesaresubstitutedequation(1)=(2x)2(0.0198x)=4x2(0.0198x)Given(Kc)valuesare3.80×105Hence,3.80×105=4x2(0.0198x)[2]Rewritetheaboveequation(2)4x2=(3.80×105)x(7.52×107)=0We solved a quadratic equation fromax2+bx+c=0b±b24ac2a[3]a=4,b=3.80×105c=7.52×107This values are substituted equation (3)x=(3.80×105)±(3.80×105)24(4)(7.52×107)2(4)x=(3.80×105)±(3.47×103)8x=4.29×104Mandx=4.29×104M

The obtained second (x) values are negative concentration, this physically impossible so we omitted this values. First (x) value is correct one.

The (x) valuesaresubstituted (ICE) equilibrium values[I]= 2X=(2)(4.29×10-4M)=8.58×10-4M[I2]=(0.0198-x)M=(0.0198-4.29×10-4)=0.0194M

The given iodine dissociation equilibrium reaction the respective reactant to give the two moles of products in the gas phase  and this equilibrium reaction expression contains single conditions like gases phase, the equilibrium constant can also be represented by Kp, were the “P” partial pressure. The each molar concentration values are Kp derived given the gas phase reaction at 10000C as showed above.

Conclusion

The molar concentration (M) values are derived given the iodine (I2) dissociation equilibrium reactions.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 14 Solutions

Chemistry

Ch. 14.2 - From the following equilibrium constant...Ch. 14.2 - Write the equilibrium constant expression for the...Ch. 14.3 - The equilibrium constant (Kc) for reaction AB+C is...Ch. 14.4 - The equilibrium constant (Kc) for the formation of...Ch. 14.4 - Consider the reaction in Example 14.9. Starting...Ch. 14.4 - At 1280C the equilibrium constant (Kc) for the...Ch. 14.4 - Use the following information to answer questions...Ch. 14.4 - Use the following information to answer questions...Ch. 14.4 - The equilibrium constant (Kc) for the A2+B22AB...Ch. 14.5 - At 430C, the equilibrium constant (KP) for the...Ch. 14.5 - Consider the equilibrium reaction involving...Ch. 14.5 - Consider the equilibrium between molecular oxygen...Ch. 14.5 - Prob. 1RCFCh. 14.5 - The diagram here shows the gaseous reaction 2AA2...Ch. 14.5 - The diagrams shown here represent the reaction...Ch. 14 - Define equilibrium. Give two examples of a dynamic...Ch. 14 - Explain the difference between physical...Ch. 14 - What is the law of mass action?Ch. 14 - Briefly describe the importance of equilibrium in...Ch. 14 - Define homogeneous equilibrium and heterogeneous...Ch. 14 - Prob. 14.6QPCh. 14 - Write the expressions for the equilibrium...Ch. 14 - Write equilibrium constant expressions for Kc, and...Ch. 14 - Write the equilibrium constant expressions for Kc...Ch. 14 - Write the equation relating Kc to KP, and define...Ch. 14 - What is the rule for writing the equilibrium...Ch. 14 - Give an example of a multiple equilibria reaction.Ch. 14 - Problems 14.13The equilibrium constant for the...Ch. 14 - The following diagrams represent the equilibrium...Ch. 14 - The equilibrium constant (Kc) for the reaction...Ch. 14 - Consider the following equilibrium process at...Ch. 14 - What is KP at 1273C for the reaction...Ch. 14 - The equilibrium constant KP for the reaction...Ch. 14 - Consider the following reaction: N2(g)+O2(g)2NO(g)...Ch. 14 - A reaction vessel contains NH3, N2, and H2 at...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - At equilibrium, the pressure of the reacting...Ch. 14 - The equilibrium constant KP for the reaction...Ch. 14 - Ammonium carbamate, NH4CO2NH2, decomposes as...Ch. 14 - Consider the following reaction at 1600C....Ch. 14 - Pure phosgene gas (COCl2), 3.00 102 mol, was...Ch. 14 - Consider the equilibrium 2NOBr(g)2NO(g)+Br2(g) If...Ch. 14 - A 2.50-mole quantity of NOCl was initially in a...Ch. 14 - The following equilibrium constants have been...Ch. 14 - The following equilibrium constants have been...Ch. 14 - The following equilibrium constants were...Ch. 14 - At a certain temperature the following reactions...Ch. 14 - Based on rate constant considerations, explain why...Ch. 14 - Explain why reactions with large equilibrium...Ch. 14 - Water is a very weak electrolyte that undergoes...Ch. 14 - Consider the following reaction, which takes place...Ch. 14 - Define reaction quotient. How does it differ from...Ch. 14 - Prob. 14.38QPCh. 14 - The equilibrium constant KP for the reaction...Ch. 14 - For the synthesis of ammonia N2(g)+2H2(g)2NH3(g)...Ch. 14 - For the reaction H2(g)+CO2(g)H2O(g)+CO(g) at 700C,...Ch. 14 - At 1000 K, a sample of pure NO2 gas decomposes:...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - The dissociation of molecular iodine into iodine...Ch. 14 - The equilibrium constant Kc for the decomposition...Ch. 14 - Consider the following equilibrium process at...Ch. 14 - Consider the heterogeneous equilibrium process:...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - Explain Le Chteliers principle. How can this...Ch. 14 - Use Le Chteliers principle to explain why the...Ch. 14 - List four factors that can shift the position of...Ch. 14 - Does the addition of a catalyst have any effects...Ch. 14 - Consider the following equilibrium system...Ch. 14 - Heating solid sodium bicarbonate in a closed...Ch. 14 - Consider the following equilibrium systems: (a)...Ch. 14 - Consider the equilibrium 2I(g)2I2(g) What would be...Ch. 14 - Consider the following equilibrium process:...Ch. 14 - Consider the reaction...Ch. 14 - In the uncatalyzed reaction N2O4(g)2NO2(g) the...Ch. 14 - Consider the gas-phase reaction...Ch. 14 - Consider the statement: The equilibrium constant...Ch. 14 - Pure nitrosyl chloride (NOCl) gas was heated to...Ch. 14 - Determine the initial and equilibrium...Ch. 14 - Diagram (a) shows the reaction A2(g)+B2(g)2AB(g)...Ch. 14 - The equilibrium constant (KP) for the formation of...Ch. 14 - Baking soda (sodium bicarbonate) undergoes thermal...Ch. 14 - Consider the following reaction at equilibrium:...Ch. 14 - The equilibrium constant KP for the reaction...Ch. 14 - Consider the following reacting system:...Ch. 14 - At a certain temperature and a total pressure of...Ch. 14 - Consider the reaction 2NO(g)+O2(g)2NO2(g) At 430C,...Ch. 14 - When heated, ammonium carbamate decomposes as...Ch. 14 - A mixture of 0.47 mole of H2 and 3.59 moles of HCl...Ch. 14 - When heated at high temperatures, iodine vapor...Ch. 14 - One mole of N2 and three moles of H2 are placed in...Ch. 14 - Prob. 14.79QPCh. 14 - A quantity of 6.75 g of SO2Cl2 was placed in a...Ch. 14 - Prob. 14.81QPCh. 14 - Prob. 14.82QPCh. 14 - Eggshells are composed mostly of calcium carbonate...Ch. 14 - The equilibrium constant KP for the following...Ch. 14 - When dissolved in water, glucose (corn sugar) and...Ch. 14 - At room temperature, solid iodine is in...Ch. 14 - Prob. 14.89QPCh. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - When heated, a gaseous compound A dissociates as...Ch. 14 - When a gas was heated under atmospheric...Ch. 14 - Prob. 14.93QPCh. 14 - At 20C, the vapor pressure of water is 0.0231 atm....Ch. 14 - Industrially, sodium metal is obtained by...Ch. 14 - In the gas phase, nitrogen dioxide is actually a...Ch. 14 - Prob. 14.99QPCh. 14 - The equilibrium constant for the reaction 4X+Y3Z...Ch. 14 - About 75 percent of hydrogen for industrial use is...Ch. 14 - Prob. 14.102QPCh. 14 - Consider the decomposition of ammonium chloride at...Ch. 14 - At 25C, the equilibrium partial pressures of NO2...Ch. 14 - Prob. 14.105QPCh. 14 - Prob. 14.107QPCh. 14 - Prob. 14.108QPCh. 14 - At 25C, a mixture of NO2 and N2O4 gases are in...Ch. 14 - A student placed a few ice cubes in a drinking...Ch. 14 - Consider the potential energy diagrams for two...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - Prob. 14.113QPCh. 14 - The equilibrium constant (KP) for the reaction...Ch. 14 - The forward and reverse rate constants for the...Ch. 14 - Consider the reaction between NO2 and N2O4 in a...Ch. 14 - Prob. 14.118QPCh. 14 - (a) Use the vant Hoff equation in Problem 14.118...Ch. 14 - The KP for the reaction SO2Cl2(g)SO2(g)+Cl2(g) is...Ch. 14 - Prob. 14.121QPCh. 14 - Consider the following equilibrium system:...Ch. 14 - Prob. 14.125QPCh. 14 - Estimate the vapor pressure of water at 60C (see...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY