Microelectronics: Circuit Analysis and Design
Microelectronics: Circuit Analysis and Design
4th Edition
ISBN: 9780073380643
Author: Donald A. Neamen
Publisher: McGraw-Hill Companies, The
Question
Book Icon
Chapter 14, Problem 14.51P

a.

To determine

Range of output voltage for the given specifications.

a.

Expert Solution
Check Mark

Answer to Problem 14.51P

The range of output voltage is,

  4mVvO76mV

Explanation of Solution

Given:

The given circuit is shown below.

  Microelectronics: Circuit Analysis and Design, Chapter 14, Problem 14.51P , additional homework tip  1

Input offset voltage is VOS=3mV

Average input bias current is IB=0.4μA

Offset bias current is IOS=0.06μA

  vI=0 and R=0

Calculation:

As,

  IB=I B1+I B22IB1+IB2=2IBIB1+IB2=2×0.4×106IB1+IB2=0.8×106......(1)

And

  IOS=|IB1IB2|IB1IB2=±IOSIB1IB2=±0.06×106.....(2)

Adding (1) and (2)

  IB1+IB2+IB1IB2=0.8×106±0.06×1062IB1=0.8×106±0.06×106IB1=0.8× 10 6±0.06× 10 62=0.8× 10 6+0.06× 10 62or0.8× 10 60.06× 10 62IB1=0.43μAor0.37μA

From (1)

  IB1=0.8×106IB2

For IB1=0.43μA

  IB1=0.8×106IB2IB1=0.8×1060.43×106IB1=0.37μA

For IB1=0.37μA

  IB1=0.8×106IB2IB1=0.8×1060.37×106IB1=0.43μAIB1=0.37μAorIB1=0.43μA

Now, the modified circuit with offset voltage and bias current is shown below.

  Microelectronics: Circuit Analysis and Design, Chapter 14, Problem 14.51P , additional homework tip  2

KCL at non-inverting terminal,

  VY( v I + V OS )R+IB2=0VY( v I + V OS )R=IB2VY(vI+V OS)=IB2RVY=vI+VOSIB2R

Now, for ideal op-amp VX=VY

  VX=vI+VOSIB2R.....(3)

Now, KCL at inverting terminal,

  VX10k+VXvO100k+IB1=010VX+VXvO100k+IB1=010VX+VXvO=IB1×100k11VXvO=IB1×100kvO=11VX+(I B1×100k)

Putting VX from (3)

  vO=11(vI+VOSIB2R)+(IB1×100k).....(4)

Now,

For vI=0 and R=0

  vO=11(0+V OSI B2(0))+(I B1×100k)vO=11VOS+(I B1×100k)

For IB1=0.43μAandVOS=3mV

  vO(max)=11(3m)+(0.43μ×100k)vO(max)=33×103+43×103vO(max)=76mV

For IB1=0.37μAandVOS=-3mV

  vO(min)=11(3m)+(0.37μ×100k)vO(min)=(33× 10 3)+(37× 10 3)vO(min)=4mV

0So, the range of output voltage is,

  vO(min)vOvO(max)4mVvO76mV

b.

To determine

Range of output voltage for the given specifications.

b.

Expert Solution
Check Mark

Answer to Problem 14.51P

The range of output voltage is,

  39mVvO39mV

Explanation of Solution

Given:

The given circuit is shown below.

  Microelectronics: Circuit Analysis and Design, Chapter 14, Problem 14.51P , additional homework tip  3

Input offset voltage is VOS=3mV

Average input bias current is IB=0.4μA

Offset bias current is IOS=0.06μA

  vI=0 and R=9.09kΩ

Calculation:

From equation (4)

  vO=11(vI+VOSIB2R)+(IB1×100k)

For vI=0 and R=9.09kΩ

  vO=11(0+V OSI B2( 9.09k))+(I B1×100k)vO=11VOS99.99k×IB2+(I B1×100k)

Putting the values,

For IB1=0.43μA,IB2=0.37μAandVOS=3mV

  vO(max)=11(3m)(99.99k×0.37μ)+(0.43μ×100k)vO(max)=33×10336.99×103+43×103vO(max)=39mV

For IB1=0.37μA,IB2=0.43μAandVOS=3mV

  vO(max)=11(3m)(99.99k×0.43μ)+(0.37μ×100k)vO(max)=(33× 10 3)(42.99× 10 3)+(37× 10 3)vO(max)=39mV

So, the range of output voltage is,

  vO(min)vOvO(max)39mVvO39mV

c.

To determine

Range of output voltage.

c.

Expert Solution
Check Mark

Answer to Problem 14.51P

The range of output voltage is,

  2.161VvO2.239V

Explanation of Solution

Given:

The given circuit is shown below.

  Microelectronics: Circuit Analysis and Design, Chapter 14, Problem 14.51P , additional homework tip  4

Input offset voltage is VOS=3mV

Average input bias current is IB=0.4μA

Offset bias current is IOS=0.06μA

  vI=0.2V and R=9.09kΩ

Calculation:

From equation (4)

  vO=11(vI+VOSIB2R)+(IB1×100k)

For vI=0.2V and R=9.09kΩ

  vO=11(0.2+V OSI B2( 9.09k))+(I B1×100k)vO=2.2+11VOS99.99k×IB2+(I B1×100k)

Putting the values,

For IB1=0.43μA,IB2=0.37μAandVOS=3mV

  vO(max)=2.2+11(3m)(99.99k×0.37μ)+(0.43μ×100k)vO(max)=2.2+33×10336.99×103+43×103vO(max)=2.239V

For IB1=0.37μA,IB2=0.43μAandVOS=3mV

  vO(max)=2.2+11(3m)(99.99k×0.43μ)+(0.37μ×100k)vO(max)=2.2+(33× 10 3)(42.99× 10 3)+(37× 10 3)vO(max)=2.239×103VvO(max)=2.161V

So, the range of output voltage is,

  vO(min)vOvO(max)2.161VvO2.239V

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question 3. Draw a buck-boost converter with circuit parameters given below.Also ;a) Output Voltageb) Inductor current averagec) Maximum and minimum inductor current valuesd) Determine the output voltage fluctuation values.Buck-Boost Converter Circuit Parameters;Input Voltage: 50VDuty Cycle: 0.6Load Resistance (R) = 10 ΩSwitching Frequency: 40 kHzL= 45 μHC = 180 μF
1.Without bypass capacitor CE, determine the current gain2.Without bypass capacitor CE, determine Ic(sat)3.Without bypass capacitor CE, determine input impedance Zi4.Find VCEQ and Calculate Ic(sat)
From the circuit of Figure 2, draw the small signal equivalent circuit. Then by taking the rd = 100 kΩ and gm = 4.47 mS, calculate the input impedance Zi, output impedance Zo and voltage gain Av.

Chapter 14 Solutions

Microelectronics: Circuit Analysis and Design

Ch. 14 - Find the closedloop input resistance of a voltage...Ch. 14 - An opamp with openloop parameters of AOL=2105 and...Ch. 14 - A 0.5 V input step function is applied at t=0 to a...Ch. 14 - The slew rate of the 741 opamp is 0.63V/s ....Ch. 14 - Prob. 14.8TYUCh. 14 - Prob. 14.8EPCh. 14 - Consider the active load bipolar duffamp stage in...Ch. 14 - Prob. 14.10EPCh. 14 - Prob. 14.11EPCh. 14 - Prob. 14.12EPCh. 14 - For the opamp circuit shown in Figure 14.28, the...Ch. 14 - Prob. 14.9TYUCh. 14 - List and describe five practical opamp parameters...Ch. 14 - What is atypical value of openloop, lowfrequency...Ch. 14 - Prob. 3RQCh. 14 - Prob. 4RQCh. 14 - Prob. 5RQCh. 14 - Prob. 6RQCh. 14 - Describe the gainbandwidth product property of a...Ch. 14 - Define slew rate and define fullpower bandwidth.Ch. 14 - Prob. 9RQCh. 14 - What is one cause of an offset voltage in the...Ch. 14 - Prob. 11RQCh. 14 - Prob. 12RQCh. 14 - Prob. 13RQCh. 14 - Prob. 14RQCh. 14 - Prob. 15RQCh. 14 - Prob. 16RQCh. 14 - Prob. 17RQCh. 14 - Prob. 14.1PCh. 14 - Consider the opamp described in Problem 14.1. In...Ch. 14 - Data in the following table were taken for several...Ch. 14 - Prob. 14.4PCh. 14 - Prob. 14.5PCh. 14 - Prob. 14.6PCh. 14 - Prob. 14.7PCh. 14 - Prob. 14.8PCh. 14 - An inverting amplifier is fabricated using 0.1...Ch. 14 - For the opamp used in the inverting amplifier...Ch. 14 - Prob. 14.11PCh. 14 - Consider the two inverting amplifiers in cascade...Ch. 14 - The noninverting amplifier in Figure P14.13 has an...Ch. 14 - For the opamp in the voltage follower circuit in...Ch. 14 - The summing amplifier in Figure P14.15 has an...Ch. 14 - Prob. 14.16PCh. 14 - Prob. 14.18PCh. 14 - Prob. 14.19PCh. 14 - Prob. 14.20PCh. 14 - Prob. 14.21PCh. 14 - Prob. 14.22PCh. 14 - Three inverting amplifiers, each with R2=150k and...Ch. 14 - Prob. 14.24PCh. 14 - Prob. 14.25PCh. 14 - Prob. 14.26PCh. 14 - Prob. 14.27PCh. 14 - Prob. D14.28PCh. 14 - Prob. 14.29PCh. 14 - Prob. 14.30PCh. 14 - Prob. 14.31PCh. 14 - Prob. 14.32PCh. 14 - Prob. 14.33PCh. 14 - Prob. 14.34PCh. 14 - Prob. 14.35PCh. 14 - Prob. 14.36PCh. 14 - Prob. 14.37PCh. 14 - In the circuit in Figure P14.38, the offset...Ch. 14 - Prob. 14.39PCh. 14 - Prob. 14.40PCh. 14 - Prob. 14.41PCh. 14 - Prob. 14.42PCh. 14 - Prob. 14.43PCh. 14 - Prob. 14.44PCh. 14 - Prob. 14.46PCh. 14 - Prob. D14.47PCh. 14 - Prob. 14.48PCh. 14 - Prob. 14.50PCh. 14 - Prob. 14.51PCh. 14 - Prob. D14.52PCh. 14 - Prob. D14.53PCh. 14 - Prob. 14.55PCh. 14 - Prob. 14.56PCh. 14 - Prob. 14.57PCh. 14 - The opamp in the difference amplifier...Ch. 14 - Prob. 14.61P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning