Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 14, Problem 1OQ

A flute has a length of 58.0 cm. If the speed of sound in air is 343 m/s, what is the fundamental frequency of the flute, assuming it is a tube closed at one end and open at the other? (a) 148 Hz (b) 296 Hz (c) 444 Hz (d) 591 Hz (e) none of those answers

Expert Solution & Answer
Check Mark
To determine

The fundamental frequency of the flute

Answer to Problem 1OQ

Option (C)

Explanation of Solution

The flute being a cube closed one end and open at the other end exhibits a standing wave pattern. The closed end of the flute will have a node and the open end of the flute will have an antinode.

Write the equation for the fundamental frequency of the flute using harmonic series.

    f1=vλ1        (I)

Here, v is the speed of sound in air and λ1 is the wavelength of the sound waves corresponding to its fundamental frequency.

Write the equation for the wavelength of the sound waves corresponding to its fundamental frequency.

    λ1=4L        (II)

Here, L is the length of the flute.

Substitute equation (I) in equation (II).

    f1=v4L

Conclusion:

Substitute 343m/s for v and 58cm for L

    f1=343m/s4(58cm)=343m/s4(0.58m)=343m/s2.32m=148Hz

Thus, the flute has a fundamental frequency of 148Hz. Therefore, only option (C) is correct and all other options are incorrect.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What is the first overtone frequency for an organ pipe 2.00 m in length, closed at one end? The speed of sound in air is 344 m/s.     86 Hz     172 Hz     129 Hz     258 Hz
What is the length of a pipe that is open on both ends and has a fundamental frequency of 400 Hz? You may assume the speed of sound in air is 341 m/s.
An open-pipe resonator has a fundamental frequency of 250.0 Hz. By how much would its length have to be changed to get a fundamental frequency of 300.0 Hz? (Assume the speed of sound is 331m/s.) a. 11.03 cm b. 77.32 cm c. 32.16 cm d. 44.09 cm

Chapter 14 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 14 - Prob. 5OQCh. 14 - Prob. 6OQCh. 14 - Prob. 7OQCh. 14 - Prob. 8OQCh. 14 - Prob. 9OQCh. 14 - Prob. 10OQCh. 14 - A standing wave having three nodes is set up in a...Ch. 14 - Prob. 1CQCh. 14 - Prob. 2CQCh. 14 - Prob. 3CQCh. 14 - Prob. 4CQCh. 14 - What limits the amplitude of motion of a real...Ch. 14 - Prob. 6CQCh. 14 - Prob. 7CQCh. 14 - Prob. 8CQCh. 14 - Prob. 1PCh. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Prob. 4PCh. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - Prob. 12PCh. 14 - Prob. 13PCh. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 17PCh. 14 - Prob. 18PCh. 14 - Prob. 19PCh. 14 - Prob. 20PCh. 14 - A string with a mass m = 8.00 g and a length L =...Ch. 14 - Prob. 22PCh. 14 - Prob. 23PCh. 14 - Prob. 24PCh. 14 - Prob. 25PCh. 14 - Review. A sphere of mass M is supported by a...Ch. 14 - Prob. 27PCh. 14 - Prob. 28PCh. 14 - Prob. 29PCh. 14 - Prob. 30PCh. 14 - Prob. 31PCh. 14 - The overall length of a piccolo is 32.0 cm. The...Ch. 14 - Prob. 33PCh. 14 - Prob. 34PCh. 14 - Two adjacent natural frequencies of an organ pipe...Ch. 14 - Do not stick anything into your ear! Estimate the...Ch. 14 - Prob. 37PCh. 14 - As shown in Figure P14.37, water is pumped into a...Ch. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - Prob. 41PCh. 14 - Why is the following situation impossible? A...Ch. 14 - 23. An air column in a glass tube is open at one...Ch. 14 - Prob. 44PCh. 14 - Prob. 45PCh. 14 - Prob. 46PCh. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Some studies suggest that the upper frequency...Ch. 14 - Prob. 50PCh. 14 - An earthquake can produce a seiche in a lake in...Ch. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - A nylon string has mass 5.50 g and length L = 86.0...Ch. 14 - Prob. 57PCh. 14 - Prob. 58PCh. 14 - Prob. 59PCh. 14 - Review. For the arrangement shown in Figure...Ch. 14 - Prob. 61PCh. 14 - Prob. 62PCh. 14 - Prob. 63PCh. 14 - Prob. 64PCh. 14 - Prob. 65PCh. 14 - Prob. 66PCh. 14 - Prob. 67PCh. 14 - Review. Consider the apparatus shown in Figure...Ch. 14 - Prob. 69P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY