Chapter 14, Problem 20RE

### Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Chapter
Section

### Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

# Test z = x 3 + y 3 −   12 x   − 27 y for maxima and minima.

To determine

To calculate: The relative maxima, relative minima and saddle points of z=x3+y312x27y if they exist.

Explanation

Given Information:

The provided function is, z=x3+y3âˆ’12xâˆ’27y.

Formula used:

Do the following steps to calculate relative maxima and minima of the function z=f(x,y),

1. Find the partial derivatives âˆ‚zâˆ‚x and âˆ‚zâˆ‚y.

2. Find the critical points, that is, the point(s) that satisfy âˆ‚zâˆ‚x=0 and âˆ‚zâˆ‚y=0.

3. Then find all the second partial derivatives and evaluate the value of D at each critical point, where D=(zxx)(zyy)âˆ’(zxy)2=âˆ‚2zâˆ‚x2â‹…âˆ‚2zâˆ‚y2âˆ’(âˆ‚2zâˆ‚xâˆ‚y)2.

(a) If D>0, then relative minimum occurs if zxx>0 and relative maximum occurs if zxx<0.

(b) If D<0, then neither a relative maximum nor a relative minimum occurs.

For a function f(x,y), the partial derivative of f with respect to x is calculated by taking the derivative of f(x,y) with respect to x and keeping the other variable y constant and the partial derivative of f with respect to y is calculated by taking the derivative of f(x,y) with respect to y and keeping the other variable x constant. The partial derivative of f with respect to x is denoted by fx and with respect to y is denoted by fy.

For a function z(x,y), the second partial derivative,

1. When both derivatives are taken with respect to x is zxx=âˆ‚2zâˆ‚x2=âˆ‚âˆ‚x(âˆ‚zâˆ‚x).

2. When both derivatives are taken with respect to y is zyy=âˆ‚2zâˆ‚y2=âˆ‚âˆ‚y(âˆ‚zâˆ‚y).

3. When first derivative is taken with respect to x and second derivative is taken with respect to y is zxy=âˆ‚2zâˆ‚yâˆ‚x=âˆ‚âˆ‚y(âˆ‚zâˆ‚x).

4. When first derivative is taken with respect to y and second derivative is taken with respect to x is zyx=âˆ‚2zâˆ‚xâˆ‚y=âˆ‚âˆ‚x(âˆ‚zâˆ‚y).

Power of x rule for a real number n is such that, if f(x)=xn then fâ€²(x)=nxnâˆ’1.

Chain rule for function f(x)=u(v(x)) is fâ€²(x)=uâ€²(v(x))â‹…vâ€²(x).

Constant function rule for a constant c is such that, if f(x)=c then fâ€²(x)=0.

Coefficient rule for a constant c is such that, if f(x)=câ‹…u(x), where u(x) is a differentiable function of x, then fâ€²(x)=câ‹…uâ€²(x).

Calculation:

Consider the function, z=x3+y3âˆ’12xâˆ’27y.

Recall that, for a function f(x,y), the partial derivative of f with respect to x is calculated by taking the derivative of f(x,y) with respect to x and keeping the other variable y constant and the partial derivative of f with respect to y is calculated by taking the derivative of f(x,y) with respect to y and keeping the other variable x constant.

Use the power of x rule for derivatives, the constant function rule, the chain rule, and the coefficient rule,

Thus,

âˆ‚zâˆ‚x=03x2âˆ’12=0x2=4x=Â±2

And,

âˆ‚zâˆ‚y=03y2âˆ’27=0y2=9y=Â±3

Thus, the critical points are (2,3), (âˆ’2,3), (2,âˆ’3) and (âˆ’2,âˆ’3).

Recall that, for a function z(x,y), the second partial derivative when both derivatives are taken with respect to x is zxx=âˆ‚2zâˆ‚x2=âˆ‚âˆ‚x(âˆ‚zâˆ‚x), when both derivatives are taken with respect to y is zyy=âˆ‚2zâˆ‚y2=âˆ‚âˆ‚y(âˆ‚zâˆ‚y), when first derivative is taken with respect to x and second derivative is taken with respect to y is zxy=âˆ‚2zâˆ‚yâˆ‚x=âˆ‚âˆ‚y(âˆ‚zâˆ‚x)

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started