BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Find the maximum value of z = x 4 y 2 subject to the constraint x   + y =   9 ,   x     0 , y 0 .

To determine

To calculate: The maximum value of the function z=x4y2 subject to constraints x+y=9, x0, y0.

Explanation

Given Information:

The provided function is z=x4y2 subject to constraints x+y=9, x0, y0.

Formula used:

According to the Lagrange multipliers method to obtain maxima or minima for a function z=f(x,y) subject to the constraint g(x,y)=0,

Find the critical values of f(x,y) using the new variable λ to form the objective function F(x,y,λ)=f(x,y)+λg(x,y).

The critical points of f(x,y) are the critical values of F(x,y,λ) which satisfies g(x,y)=0.

The critical points of F(x,y,λ) are the points that satisfy Fx=0, Fy=0, and Fλ=0, that is, the points which make all the partial derivatives of zero.

For a function f(x,y), the partial derivative of f with respect to y is calculated by taking the derivative of f(x,y) with respect to y and keeping the other variable x constant. The partial derivative of f with respect to y is denoted by fy.

Power of x rule for a real number n is such that, if f(x)=xn then f(x)=nxn1.

Constant function rule for a constant c is such that, if f(x)=c then f(x)=0.

Coefficient rule for a constant c is such that, if f(x)=cu(x), where u(x) is a differentiable function of x, then f(x)=cu(x).

Calculation:

Consider the function:

z=x4y2.

The provided constraint is x+y=9, x0, y0.

According to the Lagrange multipliers method,

The objective function is F(x,y,λ)=f(x,y)+λg(x,y).

Thus, f(x,y)=x4y2 and g(x,y)=x+y9.

Substitute x4y2 for f(x,y) and x+y9 for g(x,y) in F(x,y,λ)=f(x,y)+λg(x,y).

F(x,y,λ)=x4y2+λ(x+y9)

Since, the critical points of F(x,y,λ) are the points that satisfy Fx=0, Fy=0, and Fλ=0.

Recall that, for a function f(x,y), the partial derivative of f with respect to y is calculated by taking the derivative of f(x,y) with respect to y and keeping the other variable x constant.

Use the power of x rule for derivatives, the constant function rule and the coefficient rule

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 14 Solutions

Show all chapter solutions add
Sect-14.1 P-10ESect-14.1 P-11ESect-14.1 P-12ESect-14.1 P-13ESect-14.1 P-14ESect-14.1 P-15ESect-14.1 P-16ESect-14.1 P-17ESect-14.1 P-18ESect-14.1 P-19ESect-14.1 P-20ESect-14.1 P-21ESect-14.1 P-22ESect-14.1 P-23ESect-14.1 P-24ESect-14.1 P-25ESect-14.1 P-27ESect-14.1 P-28ESect-14.1 P-29ESect-14.1 P-30ESect-14.1 P-31ESect-14.1 P-32ESect-14.1 P-33ESect-14.1 P-34ESect-14.1 P-35ESect-14.1 P-36ESect-14.1 P-37ESect-14.1 P-38ESect-14.2 P-1CPSect-14.2 P-2CPSect-14.2 P-3CPSect-14.2 P-4CPSect-14.2 P-5CPSect-14.2 P-1ESect-14.2 P-2ESect-14.2 P-3ESect-14.2 P-4ESect-14.2 P-5ESect-14.2 P-6ESect-14.2 P-7ESect-14.2 P-8ESect-14.2 P-9ESect-14.2 P-10ESect-14.2 P-11ESect-14.2 P-12ESect-14.2 P-13ESect-14.2 P-14ESect-14.2 P-15ESect-14.2 P-16ESect-14.2 P-17ESect-14.2 P-18ESect-14.2 P-19ESect-14.2 P-20ESect-14.2 P-21ESect-14.2 P-22ESect-14.2 P-23ESect-14.2 P-24ESect-14.2 P-25ESect-14.2 P-26ESect-14.2 P-27ESect-14.2 P-28ESect-14.2 P-29ESect-14.2 P-30ESect-14.2 P-31ESect-14.2 P-32ESect-14.2 P-33ESect-14.2 P-34ESect-14.2 P-35ESect-14.2 P-36ESect-14.2 P-37ESect-14.2 P-38ESect-14.2 P-39ESect-14.2 P-40ESect-14.2 P-41ESect-14.2 P-42ESect-14.2 P-43ESect-14.2 P-44ESect-14.2 P-45ESect-14.2 P-46ESect-14.2 P-47ESect-14.2 P-48ESect-14.2 P-49ESect-14.2 P-50ESect-14.2 P-51ESect-14.2 P-52ESect-14.2 P-53ESect-14.2 P-54ESect-14.2 P-55ESect-14.2 P-56ESect-14.3 P-1CPSect-14.3 P-2CPSect-14.3 P-3CPSect-14.3 P-1ESect-14.3 P-2ESect-14.3 P-3ESect-14.3 P-4ESect-14.3 P-5ESect-14.3 P-6ESect-14.3 P-7ESect-14.3 P-8ESect-14.3 P-9ESect-14.3 P-10ESect-14.3 P-11ESect-14.3 P-12ESect-14.3 P-13ESect-14.3 P-14ESect-14.3 P-15ESect-14.3 P-16ESect-14.3 P-17ESect-14.3 P-18ESect-14.3 P-19ESect-14.3 P-20ESect-14.3 P-21ESect-14.3 P-22ESect-14.3 P-23ESect-14.3 P-24ESect-14.3 P-25ESect-14.3 P-26ESect-14.3 P-27ESect-14.3 P-28ESect-14.3 P-29ESect-14.3 P-30ESect-14.4 P-1CPSect-14.4 P-2CPSect-14.4 P-3CPSect-14.4 P-4CPSect-14.4 P-1ESect-14.4 P-2ESect-14.4 P-3ESect-14.4 P-4ESect-14.4 P-5ESect-14.4 P-6ESect-14.4 P-7ESect-14.4 P-8ESect-14.4 P-9ESect-14.4 P-10ESect-14.4 P-11ESect-14.4 P-12ESect-14.4 P-13ESect-14.4 P-14ESect-14.4 P-15ESect-14.4 P-16ESect-14.4 P-17ESect-14.4 P-18ESect-14.4 P-19ESect-14.4 P-20ESect-14.4 P-21ESect-14.4 P-22ESect-14.4 P-23ESect-14.4 P-24ESect-14.4 P-25ESect-14.4 P-26ESect-14.4 P-27ESect-14.4 P-28ESect-14.4 P-29ESect-14.4 P-30ESect-14.4 P-31ESect-14.4 P-32ESect-14.4 P-34ESect-14.4 P-35ESect-14.4 P-36ESect-14.5 P-1CPSect-14.5 P-2CPSect-14.5 P-3CPSect-14.5 P-4CPSect-14.5 P-1ESect-14.5 P-2ESect-14.5 P-3ESect-14.5 P-4ESect-14.5 P-5ESect-14.5 P-6ESect-14.5 P-7ESect-14.5 P-8ESect-14.5 P-9ESect-14.5 P-10ESect-14.5 P-11ESect-14.5 P-12ESect-14.5 P-13ESect-14.5 P-14ESect-14.5 P-15ESect-14.5 P-16ESect-14.5 P-17ESect-14.5 P-18ESect-14.5 P-19ESect-14.5 P-20ESect-14.5 P-21ESect-14.5 P-22ESect-14.5 P-23ESect-14.5 P-24ESect-14.5 P-25ESect-14.5 P-26ECh-14 P-1RECh-14 P-2RECh-14 P-3RECh-14 P-4RECh-14 P-5RECh-14 P-6RECh-14 P-7RECh-14 P-8RECh-14 P-9RECh-14 P-10RECh-14 P-11RECh-14 P-12RECh-14 P-13RECh-14 P-14RECh-14 P-15RECh-14 P-16RECh-14 P-17RECh-14 P-18RECh-14 P-19RECh-14 P-20RECh-14 P-21RECh-14 P-22RECh-14 P-23RECh-14 P-24RECh-14 P-25RECh-14 P-26RECh-14 P-27RECh-14 P-28RECh-14 P-29RECh-14 P-30RECh-14 P-31RECh-14 P-32RECh-14 P-33RECh-14 P-34RECh-14 P-35RECh-14 P-36RECh-14 P-1TCh-14 P-2TCh-14 P-3TCh-14 P-4TCh-14 P-5TCh-14 P-6TCh-14 P-7TCh-14 P-8TCh-14 P-9TCh-14 P-10T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 98102, determine whether the statement is true or false. If it is tine, explain why it is tine. If...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Find each product: (x+y2)(xy2)

Elementary Technical Mathematics

Classify as true or false. a 54 c 45 b 55 d 55

Elementary Geometry for College Students

For the continuous function at the right and the given value N, how many points c satisfy the conclusion of the...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th