close solutoin list

Let S be a set of three elements given by S = { A , B , C } . In the following table, all of the elements of S are listed in a row at the top and in a column at the left. The result x ∗ y is found in the row that starts with x at the left and in the column that has y at the top. For example, B ∗ C = C and C ∗ B = A . Thus the table defines the binary operation ∗ on the sets S . ∗ A B C A A B C B B C A C C A B a. Is the binary operation ∗ commutative? Why? b. Determine whether there is an identity element in S for ∗ . c. If there is an identity element, which elements have inverses?

BuyFind

Elements Of Modern Algebra

8th Edition
Gilbert + 2 others
Publisher: Cengage Learning,
ISBN: 9781285463230
BuyFind

Elements Of Modern Algebra

8th Edition
Gilbert + 2 others
Publisher: Cengage Learning,
ISBN: 9781285463230

Solutions

Chapter
Section
Chapter 1.4, Problem 4E
Textbook Problem

Let S be a set of three elements given by S = { A , B , C } . In the following table, all of the elements of S are listed in a row at the top and in a column at the left. The result x y is found in the row that starts with x at the left and in the column that has y at the top. For example, B C = C and C B = A . Thus the table defines the binary operation on the sets S .

A B C
A A B C
B B C A
C C A B

a. Is the binary operation commutative? Why?

b. Determine whether there is an identity element in S for .

c. If there is an identity element, which elements have inverses?

Expert Solution

a)

To determine

Whether the given binary operation is commutative.

Explanation of Solution

Given Information:

The set S={A,B,C} is given and the table that defines the binary operation on the set S is given as:

A B C
A A B C
B B C A
C C A B

Explanation:

Consider the given table

Expert Solution

b)

To determine

Whether there is an identity element in S.

Expert Solution

c)

To determine

The inverse of elements of S if there is any identity element.

Want to see this answer and more?

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

See solution

Chapter 1 Solutions

Elements Of Modern Algebra
Show all chapter solutions
Ch. 1.1 - For each set A, describe A by indicating a...Ch. 1.1 - 2. Decide whether or not each statement is true...Ch. 1.1 - Decide whether or not each statement is true. (a)...Ch. 1.1 - 4. Decide whether or not each of the following is...Ch. 1.1 - Evaluate each of the following sets, where U={...Ch. 1.1 - 6. Determine whether each of the following is...Ch. 1.1 - Write out the power set, (A), for each set A. a....Ch. 1.1 - 8. Describe two partitions of each of the...Ch. 1.1 - Write out all the different partitions of the...Ch. 1.1 - 10. Suppose the set has a . a. How many elements...Ch. 1.1 - 11. State the most general conditions on the...Ch. 1.1 - 12. Let Z denote the set of all integers, and...Ch. 1.1 - 13. Let Z denote the set of all integers, and...Ch. 1.1 - In Exercises 1435, prove each statement. ABABCh. 1.1 - In Exercises 1435, prove each statement. (A)=ACh. 1.1 - In Exercises , prove each statement. 16. If and ,...Ch. 1.1 - In Exercises , prove each statement. 17. if and...Ch. 1.1 - In Exercises , prove each statement. 18. Ch. 1.1 - In Exercises , prove each statement. 19. Ch. 1.1 - In Exercises 1435, prove each statement. (AB)=ABCh. 1.1 - In Exercise 14-35, prove each statement. 21. Ch. 1.1 - In Exercise 14-35, prove each statement. A(AB)=ABCh. 1.1 - In Exercises 14-35, prove each statement. 23. Ch. 1.1 - In Exercise 14-35, prove each statement....Ch. 1.1 - In Exercise 14-35, prove each statement. If AB,...Ch. 1.1 - In Exercise 14-35, prove each statement. 26. If...Ch. 1.1 - In Exercise 14-35, prove each statement. 27. Ch. 1.1 - In Exercise 14-35, prove each statement. A(BA)=Ch. 1.1 - In Exercises 14-35, prove each statement. 29. Ch. 1.1 - In Exercises 14-35, prove each statement....Ch. 1.1 - In Exercises 1435, prove each statement....Ch. 1.1 - In Exercises 1435, prove each statement....Ch. 1.1 - In Exercises , prove each statement. 33. Ch. 1.1 - In Exercises , prove each statement. 34. if and...Ch. 1.1 - In Exercises 1435, prove each statement. AB if and...Ch. 1.1 - Prove or disprove that AB=AC implies B=C.Ch. 1.1 - Prove or disprove that AB=AC implies B=C.Ch. 1.1 - 38. Prove or disprove that . Ch. 1.1 - Prove or disprove that (AB)=(A)(B).Ch. 1.1 - 40. Prove or disprove that . Ch. 1.1 - Express (AB)(AB) in terms of unions and...Ch. 1.1 - 42. Let the operation of addition be defined on...Ch. 1.1 - 43. Let the operation of addition be as defined in...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - True or False Label each of the following...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - 1. For the given sets, form the Cartesian...Ch. 1.2 - For each of the following mapping, state the...Ch. 1.2 - 3. For each of the following mappings, write out ...Ch. 1.2 - For each of the following mappings f:ZZ, determine...Ch. 1.2 - 5. For each of the following mappings, determine...Ch. 1.2 - 6. For the given subsets and of Z, let and...Ch. 1.2 - 7. For the given subsets and of Z, let and...Ch. 1.2 - 8. For the given subsets and of Z, let and...Ch. 1.2 - For the given subsets A and B of Z, let f(x)=2x...Ch. 1.2 - For each of the following parts, give an example...Ch. 1.2 - For the given f:ZZ, decide whether f is onto and...Ch. 1.2 - 12. Let and . For the given , decide whether is...Ch. 1.2 - 13. For the given decide whether is onto and...Ch. 1.2 - 14. Let be given by a. Prove or disprove that ...Ch. 1.2 - 15. a. Show that the mapping given in Example 2...Ch. 1.2 - 16. Let be given by a. For , find and . b. ...Ch. 1.2 - 17. Let be given by a. For find and. b. For...Ch. 1.2 - 18. Let and be defined as follows. In each case,...Ch. 1.2 - Let f and g be defined in the various parts of...Ch. 1.2 - In Exercises 20-22, Suppose and are positive...Ch. 1.2 - In Exercises 20-22, Suppose and are positive...Ch. 1.2 - In Exercises 20-22, Suppose and are positive...Ch. 1.2 - Let a and b be constant integers with a0, and let...Ch. 1.2 - 24. Let, where and are nonempty. Prove that for...Ch. 1.2 - 25. Let, where and are non empty, and let and ...Ch. 1.2 - 26. Let and. Prove that for any subset of T of...Ch. 1.2 - 27. Let , where and are nonempty. Prove that ...Ch. 1.2 - 28. Let where and are nonempty. Prove that ...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - True or False Label each of the following...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - For each of the following pairs and decide...Ch. 1.3 - For each pair given in Exercise 1, decide whether ...Ch. 1.3 - Let . Find mappings and such that. Ch. 1.3 - Give an example of mappings and such that one of...Ch. 1.3 - Give an example of mapping and different from...Ch. 1.3 - 6. a. Give an example of mappings and , different...Ch. 1.3 - 7. a. Give an example of mappings and , where is...Ch. 1.3 - Suppose f,g and h are all mappings of a set A into...Ch. 1.3 - Find mappings f,g and h of a set A into itself...Ch. 1.3 - Let g:AB and f:BC. Prove that f is onto if fg is...Ch. 1.3 - 11. Let and . Prove that is one-to-one if is...Ch. 1.3 - Let f:AB and g:BA. Prove that f is one-to-one and...Ch. 1.4 - True or False Label each of the following...Ch. 1.4 - True or False Label each of the following...Ch. 1.4 - Label each of the following statements as either...Ch. 1.4 - True or False Label each of the following...Ch. 1.4 - True or False Label each of the following...Ch. 1.4 - True or False Label each of the following...Ch. 1.4 - True or False Label each of the following...Ch. 1.4 - True or False Label each of the following...Ch. 1.4 - True or False Label each of the following...Ch. 1.4 - 1. Decide whether the given set is closed with...Ch. 1.4 - In each part following, a rule that determines a...Ch. 1.4 - 3. Let be a set of three elements given by . In...Ch. 1.4 - 4. Let be a set of three elements given by . In...Ch. 1.4 - 5. Let be the set of four elements given by with...Ch. 1.4 - Let S be the set of four elements given by S={...Ch. 1.4 - 7. Prove or disprove that the set of nonzero...Ch. 1.4 - 8. Prove or disprove that the set of all odd...Ch. 1.4 - 9. The definition of an even integer was stated in...Ch. 1.4 - 10. Prove or disprove that the set of all nonzero...Ch. 1.4 - Prove or disprove that the set B={ z3|zZ } is...Ch. 1.4 - 12. Prove or disprove that the set of non zero...Ch. 1.4 - Assume that is an associative binary operation on...Ch. 1.4 - Assume that is a binary operation on a non empty...Ch. 1.4 - 15. Let be a binary operation on the non empty...Ch. 1.4 - Assume that is an associative binary operation on...Ch. 1.5 - True or False Label each of the following...Ch. 1.5 - True or False Label each of the following...Ch. 1.5 - True or False Label each of the following...Ch. 1.5 - For each of the following mappings exhibit a...Ch. 1.5 - 2. For each of the mappings given in Exercise 1,...Ch. 1.5 - 3. If is a positive integer and the set has ...Ch. 1.5 - 4. Let , where is nonempty. Prove that a has...Ch. 1.5 - Let f:AA, where A is nonempty. Prove that f a has...Ch. 1.5 - 6. Prove that if is a permutation on , then is a...Ch. 1.5 - Prove that if f is a permutation on A, then...Ch. 1.5 - 8. a. Prove that the set of all onto mappings from...Ch. 1.5 - Let f and g be permutations on A. Prove that...Ch. 1.5 - 10. Let and be mappings from to. Prove that if is...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - True or False Label each of the following...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Write out the matrix that matches the given...Ch. 1.6 - 2. Perform the indicated operations, if...Ch. 1.6 - 3. Perform the following multiplications, if...Ch. 1.6 - Let A=[aij]23 where aij=i+j, and let B=[bij]34...Ch. 1.6 - 5. Show that the matrix equation is equivalent to...Ch. 1.6 - 6. Write a single matrix equation of the form ...Ch. 1.6 - Let ij denote the Kronecker delta: ij=1 if i=j,...Ch. 1.6 - Let S be the set of four matrices S={I,A,B,C},...Ch. 1.6 - 9. Find two square matrices and such that. Ch. 1.6 - Find two nonzero matrices A and B such that AB=BA.Ch. 1.6 - 11. Find two nonzero matrices and such that. Ch. 1.6 - 12. Positive integral powers of a square matrix...Ch. 1.6 - For the matrices in Exercise 12, evaluate (A+B)2...Ch. 1.6 - Assume that A1 exists and find a solution X to...Ch. 1.6 - 15. Assume that are in and with and invertible....Ch. 1.6 - a. Prove part d of Theorem 1.30. b. Prove part e...Ch. 1.6 - a. Prove part a. of Theorem 1.34. b. Prove part b....Ch. 1.6 - Prove part b of Theorem 1.35. Theorem 1.35 ...Ch. 1.6 - Let a and b be real numbers and A and B elements...Ch. 1.6 - Prove that if then. Ch. 1.6 - Suppose that A is an invertible matrix over and O...Ch. 1.6 - Let be the set of all elements of that have one...Ch. 1.6 - Prove that the set S={[abba]|a,b} is closed with...Ch. 1.6 - Prove or disprove that the set of diagonal...Ch. 1.6 - Let A and B be square matrices of order n over...Ch. 1.6 - Let and be square matrices of order over ....Ch. 1.6 - A square matrix A=[aij]n with aij=0 for all ij is...Ch. 1.6 - Let a,b,c,andd be real numbers. If adbc0, show...Ch. 1.6 - Let A=[abcd] over . Prove that if adbc=0, then A...Ch. 1.6 - Let be elements of where is not a zero matrix....Ch. 1.6 - Let A,BandC be square matrices of order n over ....Ch. 1.6 - Let A and B be nn matrices over such that A1 and...Ch. 1.7 - Label each of the following statements as either...Ch. 1.7 - True or False Label each of the following...Ch. 1.7 - True or False Label each of the following...Ch. 1.7 - Label each of the following statements as either...Ch. 1.7 - True or False Label each of the following...Ch. 1.7 - Label each of the following statements as either...Ch. 1.7 - For determine which of the following relations...Ch. 1.7 - 2. In each of the following parts, a relation is...Ch. 1.7 - a. Let R be the equivalence relation defined on Z...Ch. 1.7 - 4. Let be the relation “congruence modulo 5”...Ch. 1.7 - 5. Let be the relation “congruence modulo ”...Ch. 1.7 - In Exercises 610, a relation R is defined on the...Ch. 1.7 - In Exercises 610, a relation R is defined on the...Ch. 1.7 - In Exercises 610, a relation R is defined on the...Ch. 1.7 - In Exercises 610, a relation R is defined on the...Ch. 1.7 - In Exercises , a relation is defined on the set ...Ch. 1.7 - Let be a relation defined on the set of all...Ch. 1.7 - Let and be lines in a plane. Decide in each case...Ch. 1.7 - 13. Consider the set of all nonempty subsets of ....Ch. 1.7 - In each of the following parts, a relation is...Ch. 1.7 - Let A=R0, the set of all nonzero real numbers, and...Ch. 1.7 - 16. Let and define on by if and only if ....Ch. 1.7 - In each of the following parts, a relation R is...Ch. 1.7 - Let (A) be the power set of the nonempty set A,...Ch. 1.7 - For each of the following relations R defined on...Ch. 1.7 - Give an example of a relation R on a nonempty set...Ch. 1.7 - 21. A relation on a nonempty set is called...Ch. 1.7 - A relation R on a nonempty set A is called...Ch. 1.7 - A relation R on a nonempty set A is called...Ch. 1.7 - For any relation on the nonempty set, the inverse...Ch. 1.7 - 25. Let , , and . Write out and . Ch. 1.7 - 26. Let , , and . Write out and . Ch. 1.7 - Prove Theorem 1.40: If is an equivalence relation...Ch. 1.7 - 28. Let , and . Define the relation R on A by if...Ch. 1.7 - 29. Suppose , , represents a partition of the...Ch. 1.7 - Suppose thatis an onto mapping from to. Prove that...

Additional Math Textbook Solutions

Find more solutions based on key concepts
Show solutions
In Exercises 8387, determine whether the statement is true or false. If it is true, explain why it is true. If ...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Evaluate the integral. 142+x2xdx

Single Variable Calculus: Early Transcendentals, Volume I

PUTNAM EXAM CHALLENGE Evaluate limb010101cos2{2n(x1+x2++x6)}dx1dx2dxn

Calculus: Early Transcendental Functions (MindTap Course List)

Write the sum in sigma notation. 19. x+x2+x3++xn

Single Variable Calculus: Early Transcendentals

Sometimes, Always, or Never: If f(c) = 0, then c is a critical number.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

In Exercises 17 to 22, factor completely. 4x2-16

Elementary Geometry for College Students

Describe why you might be cautious about using the Internet to find answers to medical questions.

Research Methods for the Behavioral Sciences (MindTap Course List)

Trade Discount Often retailers sell merchandise at a suggested retail price determined by the manufacturer. The...

Functions and Change: A Modeling Approach to College Algebra (MindTap Course List)

In Problems 110 use the finite difference method and the indicated value of n to approximate the solution of th...

A First Course in Differential Equations with Modeling Applications (MindTap Course List)

3. In a regression analysis involving 30 observations, the following estimated regression equation was obtained...

Modern Business Statistics with Microsoft Office Excel (with XLSTAT Education Edition Printed Access Card) (MindTap Course List)