menu
bartleby
search
close search
Hit Return to see all results
close solutoin list

Draw the general titration curve for a strong acid titrated by a strong base. At the various points in the titration, list the major species present before any reaction takes place and the major species present after any reaction takes place. What reaction takes place in a strong acid–strong base titration? How do you calculate the pH at the various points along the curve? What is the pH at the equivalence point for a strong acid–strong base titration? Why?

BuyFindarrow_forward

Chemistry: An Atoms First Approach

2nd Edition
Steven S. Zumdahl + 1 other
Publisher: Cengage Learning
ISBN: 9781305079243

Solutions

Chapter
Section
BuyFindarrow_forward

Chemistry: An Atoms First Approach

2nd Edition
Steven S. Zumdahl + 1 other
Publisher: Cengage Learning
ISBN: 9781305079243
Chapter 14, Problem 5RQ
Textbook Problem
21 views

Draw the general titration curve for a strong acid titrated by a strong base. At the various points in the titration, list the major species present before any reaction takes place and the major species present after any reaction takes place. What reaction takes place in a strong acid–strong base titration? How do you calculate the pH at the various points along the curve? What is the pH at the equivalence point for a strong acid–strong base titration? Why?

Interpretation Introduction

Interpretation: The titration curve for strong acid and strong base; The major species present before and after the reaction at various points in the curve; reaction that takes place in a strong acid-strong base titration, pH at various points along the curve and pH at equivalence point for a strong acid-strong base titration is to be stated.

Concept introduction: The strong acid has a tendency to undergo complete dissociation. In the same way a strong base is the one that undergoes complete dissociation in aqueous solution.

To determine: The titration curve for strong acid and strong base; The major species present before and after the reaction at various points in the curve; reaction that takes place in a strong acid-strong base titration, pH at various points along the curve and pH at equivalence point for a strong acid-strong base titration.

Explanation of Solution

Explanation

The plot between pH of analyte solution and the volume of the titrant that is added from burette is called the titration curve.

The general titration curve for a strong acid titrated by a strong base is shown below.

Figure 1

When no Sodium hydroxide is added, then species present in the solution is only H3O+.

The species present before any reaction occurs is Na+, OH, H3O+ and Cl.and after reaction is H3O+.

At the equivalence point the solution contains only salt, that is Sodium chloride.

When excess of Sodium hydroxide is added then solution contains OH.

Suppose the titrant is Sodium hydroxide with concentration of 0.100M and the analyte is Hydrochloric acid, having concentration equal to 0.200M volume equal to 50.0mL. The various points in the curve represent the species as,

  • When no Sodium hydroxide is added, then species present in the solution is only H3O+ that is obtained after the Hydrochloric acid undergoes dissociation.

    HCl+H2OH3O++Cl

  • When 10.0mL Sodium hydroxide is added in the solution, then the consumption of H3O+ occurs by OH. The species present before any reaction occurs is Na+, OH, H3O+ and Cl. But the solution is still acidic because of the presence of H3O+ ions.
  • When the solution reaches the equivalence point, the number of moles of Sodium hydroxide is equal to Number of moles of Hydrochloric acid. The solution contains only salt, that is Sodium chloride.
  • When excess of Sodium hydroxide is added, then the solution becomes basic because the Hydrochloric acid has already been neutralized and therefore, solution now contains OH.

The reaction that takes place between strong acid and strong base is called neutralization reaction and it leads to the formation of salt and water. For example: the reaction between Sodium hydroxide and Hydrochloric acid leads to the formation of Sodium chloride and water. Therefore, the reaction is represented as,

HCl+NaOHNaCl+H2O

The calculation of pH at various points is given as,

When no Sodium hydroxide is added in the solution then the solution contains only H+, therefore pH is given by concentration of H+ from Hydrochloric acid. The pH of the solution is shown below.

pH=log[H+] (1)

Where,

  • [H+] is the concentration of Hydrogen ions.

Substitute the value of [H+] in the above equation.

pH=log[H+]=log(0.200)=0.7_

The value of pH of solution when 0.0mL NaOH has been added is. 0.7_.

When 20.0mL of NaOH has been added then hydroxide ions will react with H+ and this leads to the formation of water.

The conversion of mL into L is done as,

1mL=0.001L

Hence the conversion of 20.0mL into L is done as,

20.0mL=20.0×0.001L=0.020L

Similarly, the conversion of 50.0mL into L is done as,

50.0mL=50.0×0.001L=0.050L

The concentration of any species is given as,

Concentration=NumberofmolesVolumeofsolutioninlitres (2)

Rearrange the above equation to obtain the value of number of moles.

Numberofmoles=Concentration×Volumeofsolutioninlitres (3)

Substitute the concentration and volume of HCl in the above equation.

Numberofmoles=Concentration×Volumeofsolutioninlitres=0.200M×0.050L=0.01moles

Similarly, substitute the concentration and volume of NaOH in the above equation.

Numberofmoles=Concentration×Volumeofsolutioninlitres=0.100M×0.020L=0.002moles

The reaction between OH and H+ is represented as,

H++OHH2OInitialmoles        0.010.002Change (M)                              0.0020.002Final moles0.0080

Total volume of solution =VolumeofHCl+VolumeofNaOH=0.050L+0.020L=0.070L

Substitute the value of number of moles of H+ and volume of solution in equation (2)

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 14 Solutions

Chemistry: An Atoms First Approach
Show all chapter solutions
add
Ch. 14 - What are the major species in solution after...Ch. 14 - A friend asks the following: Consider a buffered...Ch. 14 - Mixing together solutions of acetic acid and...Ch. 14 - Could a buffered solution be made by mixing...Ch. 14 - Sketch two pH curves, one for the titration of a...Ch. 14 - Sketch a pH curve for the titration of a weak acid...Ch. 14 - You have a solution of the weak acid HA and add...Ch. 14 - You have a solution of the weak acid HA and add...Ch. 14 - The common ion effect for weak acids is to...Ch. 14 - Consider a buffer solution where [weak acid] ...Ch. 14 - A best buffer has about equal quantities of weak...Ch. 14 - Consider the following pH curves for 100.0 mL of...Ch. 14 - An acid is titrated with NaOH. The following...Ch. 14 - Consider the following four titrations. i. 100.0...Ch. 14 - Figure 14-4 shows the pH curves for the titrations...Ch. 14 - Acidbase indicators mark the end point of...Ch. 14 - How many of the following are buffered solutions?...Ch. 14 - Which of the following can be classified as buffer...Ch. 14 - A certain buffer is made by dissolving NaHCO3 and...Ch. 14 - A buffer is prepared by dissolving HONH2 and...Ch. 14 - Calculate the pH of each of the following...Ch. 14 - Calculate the pH of each of the following...Ch. 14 - Compare the percent dissociation of the acid in...Ch. 14 - Compare the percent ionization of the base in...Ch. 14 - Calculate the pH after 0.020 mole of HCl is added...Ch. 14 - Calculate the pH after 0.020 mole of HCl is added...Ch. 14 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 14 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 14 - Which of the solutions in Exercise 21 shows the...Ch. 14 - Which of the solutions in Exercise 22 is a...Ch. 14 - Calculate the pH of a solution that is 1.00 M HNO2...Ch. 14 - Calculate the pH of a solution that is 0.60 M HF...Ch. 14 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 14 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 14 - Calculate the pH of each of the following buffered...Ch. 14 - Calculate the pH of each of the following buffered...Ch. 14 - Calculate the pH of a buffered solution prepared...Ch. 14 - A buffered solution is made by adding 50.0 g NH4Cl...Ch. 14 - Calculate the pH after 0.010 mole of gaseous HCl...Ch. 14 - An aqueous solution contains dissolved C6H5NH3Cl...Ch. 14 - Calculate the mass of sodium acetate that must be...Ch. 14 - What volumes of 0.50 M HNO2 and 0.50 M NaNO2 must...Ch. 14 - Consider a solution that contains both C5H5N and...Ch. 14 - Calculate the ratio [NH3]/[NH4+] in...Ch. 14 - Carbonate buffers are important in regulating the...Ch. 14 - When a person exercises, muscle contractions...Ch. 14 - Consider the acids in Table 13-2. Which acid would...Ch. 14 - Consider the bases in Table 13-3. Which base would...Ch. 14 - Calculate the pH of a solution that is 0.40 M...Ch. 14 - Calculate the pH of a solution that is 0.20 M HOCl...Ch. 14 - Which of the following mixtures would result in...Ch. 14 - Which of the following mixtures would result in a...Ch. 14 - What quantity (moles) of NaOH must be added to 1.0...Ch. 14 - Calculate the number of moles of HCl(g) that must...Ch. 14 - Consider the titration of a generic weak acid HA...Ch. 14 - Sketch the titration curve for the titration of a...Ch. 14 - Consider the titration of 40.0 mL of 0.200 M HClO4...Ch. 14 - Consider the titration of 80.0 mL of 0.100 M...Ch. 14 - Consider the titration of 100.0 mL of 0.200 M...Ch. 14 - Consider the titration of 100.0 mL of 0.100 M...Ch. 14 - Lactic acid is a common by-product of cellular...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Calculate the pH at the halfway point and at the...Ch. 14 - In the titration of 50.0 mL of 1.0 M methylamine,...Ch. 14 - You have 75.0 mL of 0.10 M HA. After adding 30.0...Ch. 14 - A student dissolves 0.0100 mole of an unknown weak...Ch. 14 - Two drops of indicator HIn (Ka = 1.0 109), where...Ch. 14 - Methyl red has the following structure: It...Ch. 14 - Potassium hydrogen phthalate, known as KHP (molar...Ch. 14 - A certain indicator HIn has a pKa of 3.00 and a...Ch. 14 - Which of the indicators in Fig. 14-8 could be used...Ch. 14 - Which of the indicators in Fig. 14-8 could be used...Ch. 14 - Which of the indicators in Fig. 14-8 could be used...Ch. 14 - Which of the indicators in Fig. 14-8 could be used...Ch. 14 - Estimate the pH of a solution in which bromcresol...Ch. 14 - Estimate the pH of a solution in which crystal...Ch. 14 - A solution has a pH of 7.0. What would be the...Ch. 14 - A solution has a pH of 4.5. What would be the...Ch. 14 - Derive an equation analogous to the...Ch. 14 - a. Calculate the pH of a buffered solution that is...Ch. 14 - Tris(hydroxymethyl)aminomethane, commonly called...Ch. 14 - You make 1.00 L of a buffered solution (pH = 4.00)...Ch. 14 - You have the following reagents on hand: Solids...Ch. 14 - Amino acids are the building blocks for all...Ch. 14 - Phosphate buffers are important in regulating the...Ch. 14 - What quantity (moles) of HCl(g) must be added to...Ch. 14 - Calculate the value of the equilibrium constant...Ch. 14 - The following plot shows the pH curves for the...Ch. 14 - Calculate the volume of 1.50 102 M NaOH that must...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - A certain acetic acid solution has pH = 2.68....Ch. 14 - A 0.210-g sample of an acid (molar mass = 192...Ch. 14 - The active ingredient in aspirin is...Ch. 14 - One method for determining the purity of aspirin...Ch. 14 - A student intends to titrate a solution of a weak...Ch. 14 - A student titrates an unknown weak acid, HA, to a...Ch. 14 - A sample of a certain monoprotic weak acid was...Ch. 14 - Consider 1.0 L of a solution that is 0.85 M HOC6H5...Ch. 14 - What concentration of NH4Cl is necessary to buffer...Ch. 14 - Consider the following acids and bases: HCO2H Ka =...Ch. 14 - Consider a buffered solution containing CH3NH3Cl...Ch. 14 - Consider the titration of 150.0 mL of 0.100 M HI...Ch. 14 - Consider the titration of 100.0 mL of 0.100 M HCN...Ch. 14 - Consider the titration of 100.0 mL of 0.200 M...Ch. 14 - Consider the following four titrations (iiv): i....Ch. 14 - Another way to treat data from a pH titration is...Ch. 14 - A buffer is made using 45.0 mL of 0.750 M HC3H5O2...Ch. 14 - A 0.400-M solution of ammonia was titrated with...Ch. 14 - What volume of 0.0100 M NaOH must be added to 1.00...Ch. 14 - Consider a solution formed by mixing 50.0 mL of...Ch. 14 - When a diprotic acid, H2A, is titrated with NaOH,...Ch. 14 - Consider the following two acids: In two separate...Ch. 14 - The titration of Na2CO3 with HCl bas the following...Ch. 14 - Consider the titration curve in Exercise 115 for...Ch. 14 - A few drops of each of the indicators shown in the...Ch. 14 - Malonic acid (HO2CCH2CO2H) is a diprotic acid. In...Ch. 14 - A buffer solution is prepared by mixing 75.0 mL of...Ch. 14 - A 10.00-g sample of the ionic compound NaA, where...Ch. 14 - Calculate the pH of a solution prepared by mixing...Ch. 14 - Consider a solution prepared by mixing the...

Additional Science Textbook Solutions

Find more solutions based on key concepts
Show solutions add
What are the features of a healthy high-fat diet?

Understanding Nutrition (MindTap Course List)

The roles of the essential fatty acids include forming parts of cell membranes. supporting infant growth and vi...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

What are the four most common metric prefixes?

An Introduction to Physical Science

Which ocean basin has the greatest potential fetch?

Oceanography: An Invitation To Marine Science, Loose-leaf Versin

Suppose you install a compass on the center of a cars dashboard. (a) Assuming the dashboard is made mostly of p...

Physics for Scientists and Engineers, Technology Update (No access codes included)