BuyFind*arrow_forward*

8th Edition

Gilbert + 2 others

Publisher: Cengage Learning,

ISBN: 9781285463230

Chapter 1.4, Problem 9E

Textbook Problem

The definition of an even integer was stated in Section 1.2. Prove or disprove that the set

**a.** addition defined on

**b.** multiplication defined on

Elements Of Modern Algebra

Show all chapter solutions

Ch. 1.1 - True or False Label each of the following...Ch. 1.1 - True or False
Label each of the following...Ch. 1.1 - True or False
Label each of the following...Ch. 1.1 - True or False Label each of the following...Ch. 1.1 - True or False Label each of the following...Ch. 1.1 - True or False Label each of the following...Ch. 1.1 - True or False
Label each of the following...Ch. 1.1 - True or False
Label each of the following...Ch. 1.1 - True or False Label each of the following...Ch. 1.1 - True or False Label each of the following...

Ch. 1.1 - For each set A, describe A by indicating a...Ch. 1.1 - 2. Decide whether or not each statement is true...Ch. 1.1 - Decide whether or not each statement is true. (a)...Ch. 1.1 - 4. Decide whether or not each of the following is...Ch. 1.1 - Evaluate each of the following sets, where U={...Ch. 1.1 - 6. Determine whether each of the following is...Ch. 1.1 - Write out the power set, (A), for each set A. a....Ch. 1.1 - 8. Describe two partitions of each of the...Ch. 1.1 - Write out all the different partitions of the...Ch. 1.1 - 10. Suppose the set has a .
a. How many elements...Ch. 1.1 - 11. State the most general conditions on the...Ch. 1.1 - 12. Let Z denote the set of all integers, and...Ch. 1.1 - 13. Let Z denote the set of all integers, and...Ch. 1.1 - In Exercises 1435, prove each statement. ABABCh. 1.1 - In Exercises 1435, prove each statement. (A)=ACh. 1.1 - In Exercises , prove each statement.
16. If and ,...Ch. 1.1 - In Exercises , prove each statement.
17. if and...Ch. 1.1 - In Exercises , prove each statement.
18.
Ch. 1.1 - In Exercises , prove each statement.
19.
Ch. 1.1 - In Exercises 1435, prove each statement. (AB)=ABCh. 1.1 - In Exercise 14-35, prove each statement.
21.
Ch. 1.1 - In Exercise 14-35, prove each statement. A(AB)=ABCh. 1.1 - In Exercises 14-35, prove each statement.
23.
Ch. 1.1 - In Exercise 14-35, prove each statement....Ch. 1.1 - In Exercise 14-35, prove each statement. If AB,...Ch. 1.1 - In Exercise 14-35, prove each statement.
26. If...Ch. 1.1 - In Exercise 14-35, prove each statement.
27.
Ch. 1.1 - In Exercise 14-35, prove each statement. A(BA)=Ch. 1.1 - In Exercises 14-35, prove each statement.
29.
Ch. 1.1 - In Exercises 14-35, prove each statement....Ch. 1.1 - In Exercises 1435, prove each statement....Ch. 1.1 - In Exercises 1435, prove each statement....Ch. 1.1 - In Exercises , prove each statement.
33.
Ch. 1.1 - In Exercises , prove each statement.
34. if and...Ch. 1.1 - In Exercises 1435, prove each statement. AB if and...Ch. 1.1 - Prove or disprove that AB=AC implies B=C.Ch. 1.1 - Prove or disprove that AB=AC implies B=C.Ch. 1.1 - 38. Prove or disprove that .
Ch. 1.1 - Prove or disprove that (AB)=(A)(B).Ch. 1.1 - 40. Prove or disprove that .
Ch. 1.1 - Express (AB)(AB) in terms of unions and...Ch. 1.1 - 42. Let the operation of addition be defined on...Ch. 1.1 - 43. Let the operation of addition be as defined in...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - True or False
Label each of the following...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - 1. For the given sets, form the Cartesian...Ch. 1.2 - For each of the following mapping, state the...Ch. 1.2 - 3. For each of the following mappings, write out ...Ch. 1.2 - For each of the following mappings f:ZZ, determine...Ch. 1.2 - 5. For each of the following mappings, determine...Ch. 1.2 - 6. For the given subsets and of Z, let and...Ch. 1.2 - 7. For the given subsets and of Z, let and...Ch. 1.2 - 8. For the given subsets and of Z, let and...Ch. 1.2 - For the given subsets A and B of Z, let f(x)=2x...Ch. 1.2 - For each of the following parts, give an example...Ch. 1.2 - For the given f:ZZ, decide whether f is onto and...Ch. 1.2 - 12. Let and . For the given , decide whether is...Ch. 1.2 - 13. For the given decide whether is onto and...Ch. 1.2 - 14. Let be given by
a. Prove or disprove that ...Ch. 1.2 - 15. a. Show that the mapping given in Example 2...Ch. 1.2 - 16. Let be given by
a. For , find and .
b. ...Ch. 1.2 - 17. Let be given by
a. For find and.
b. For...Ch. 1.2 - 18. Let and be defined as follows. In each case,...Ch. 1.2 - Let f and g be defined in the various parts of...Ch. 1.2 - In Exercises 20-22, Suppose and are positive...Ch. 1.2 - In Exercises 20-22, Suppose and are positive...Ch. 1.2 - In Exercises 20-22, Suppose and are positive...Ch. 1.2 - Let a and b be constant integers with a0, and let...Ch. 1.2 - 24. Let, where and are nonempty.
Prove that for...Ch. 1.2 - 25. Let, where and are non empty, and let and ...Ch. 1.2 - 26. Let and. Prove that for any subset of T of...Ch. 1.2 - 27. Let , where and are nonempty. Prove that ...Ch. 1.2 - 28. Let where and are nonempty. Prove that ...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - True or False
Label each of the following...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - For each of the following pairs and decide...Ch. 1.3 - For each pair given in Exercise 1, decide whether ...Ch. 1.3 - Let . Find mappings and such that.
Ch. 1.3 - Give an example of mappings and such that one of...Ch. 1.3 - Give an example of mapping and different from...Ch. 1.3 - 6. a. Give an example of mappings and , different...Ch. 1.3 - 7. a. Give an example of mappings and , where is...Ch. 1.3 - Suppose f,g and h are all mappings of a set A into...Ch. 1.3 - Find mappings f,g and h of a set A into itself...Ch. 1.3 - Let g:AB and f:BC. Prove that f is onto if fg is...Ch. 1.3 - 11. Let and . Prove that is one-to-one if is...Ch. 1.3 - Let f:AB and g:BA. Prove that f is one-to-one and...Ch. 1.4 - True or False
Label each of the following...Ch. 1.4 - True or False
Label each of the following...Ch. 1.4 - Label each of the following statements as either...Ch. 1.4 - True or False
Label each of the following...Ch. 1.4 - True or False Label each of the following...Ch. 1.4 - True or False
Label each of the following...Ch. 1.4 - True or False
Label each of the following...Ch. 1.4 - True or False
Label each of the following...Ch. 1.4 - True or False Label each of the following...Ch. 1.4 - 1. Decide whether the given set is closed with...Ch. 1.4 - In each part following, a rule that determines a...Ch. 1.4 - 3. Let be a set of three elements given by . In...Ch. 1.4 - 4. Let be a set of three elements given by . In...Ch. 1.4 - 5. Let be the set of four elements given by with...Ch. 1.4 - Let S be the set of four elements given by S={...Ch. 1.4 - 7. Prove or disprove that the set of nonzero...Ch. 1.4 - 8. Prove or disprove that the set of all odd...Ch. 1.4 - 9. The definition of an even integer was stated in...Ch. 1.4 - 10. Prove or disprove that the set of all nonzero...Ch. 1.4 - Prove or disprove that the set B={ z3|zZ } is...Ch. 1.4 - 12. Prove or disprove that the set of non zero...Ch. 1.4 - Assume that is an associative binary operation on...Ch. 1.4 - Assume that is a binary operation on a non empty...Ch. 1.4 - 15. Let be a binary operation on the non empty...Ch. 1.4 - Assume that is an associative binary operation on...Ch. 1.5 - True or False Label each of the following...Ch. 1.5 - True or False Label each of the following...Ch. 1.5 - True or False
Label each of the following...Ch. 1.5 - For each of the following mappings exhibit a...Ch. 1.5 - 2. For each of the mappings given in Exercise 1,...Ch. 1.5 - 3. If is a positive integer and the set has ...Ch. 1.5 - 4. Let , where is nonempty. Prove that a has...Ch. 1.5 - Let f:AA, where A is nonempty. Prove that f a has...Ch. 1.5 - 6. Prove that if is a permutation on , then is a...Ch. 1.5 - Prove that if f is a permutation on A, then...Ch. 1.5 - 8. a. Prove that the set of all onto mappings from...Ch. 1.5 - Let f and g be permutations on A. Prove that...Ch. 1.5 - 10. Let and be mappings from to. Prove that if is...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - True or False
Label each of the following...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Write out the matrix that matches the given...Ch. 1.6 - 2. Perform the indicated operations, if...Ch. 1.6 - 3. Perform the following multiplications, if...Ch. 1.6 - Let A=[aij]23 where aij=i+j, and let B=[bij]34...Ch. 1.6 - 5. Show that the matrix equation is equivalent to...Ch. 1.6 - 6. Write a single matrix equation of the form ...Ch. 1.6 - Let ij denote the Kronecker delta: ij=1 if i=j,...Ch. 1.6 - Let S be the set of four matrices S={I,A,B,C},...Ch. 1.6 - 9. Find two square matrices and such that.
Ch. 1.6 - Find two nonzero matrices A and B such that AB=BA.Ch. 1.6 - 11. Find two nonzero matrices and such that.
Ch. 1.6 - 12. Positive integral powers of a square matrix...Ch. 1.6 - For the matrices in Exercise 12, evaluate (A+B)2...Ch. 1.6 - Assume that A1 exists and find a solution X to...Ch. 1.6 - 15. Assume that are in and with and invertible....Ch. 1.6 - a. Prove part d of Theorem 1.30. b. Prove part e...Ch. 1.6 - a. Prove part a. of Theorem 1.34. b. Prove part b....Ch. 1.6 - Prove part b of Theorem 1.35.
Theorem 1.35 ...Ch. 1.6 - Let a and b be real numbers and A and B elements...Ch. 1.6 - Prove that if then.
Ch. 1.6 - Suppose that A is an invertible matrix over and O...Ch. 1.6 - Let be the set of all elements of that have one...Ch. 1.6 - Prove that the set S={[abba]|a,b} is closed with...Ch. 1.6 - Prove or disprove that the set of diagonal...Ch. 1.6 - Let A and B be square matrices of order n over...Ch. 1.6 - Let and be square matrices of order over ....Ch. 1.6 - A square matrix A=[aij]n with aij=0 for all ij is...Ch. 1.6 - Let a,b,c,andd be real numbers. If adbc0, show...Ch. 1.6 - Let A=[abcd] over . Prove that if adbc=0, then A...Ch. 1.6 - Let be elements of where is not a zero matrix....Ch. 1.6 - Let A,BandC be square matrices of order n over ....Ch. 1.6 - Let A and B be nn matrices over such that A1 and...Ch. 1.7 - Label each of the following statements as either...Ch. 1.7 - True or False
Label each of the following...Ch. 1.7 -
True or False
Label each of the following...Ch. 1.7 - Label each of the following statements as either...Ch. 1.7 - True or False
Label each of the following...Ch. 1.7 - Label each of the following statements as either...Ch. 1.7 - For determine which of the following relations...Ch. 1.7 - 2. In each of the following parts, a relation is...Ch. 1.7 - a. Let R be the equivalence relation defined on Z...Ch. 1.7 - 4. Let be the relation “congruence modulo 5”...Ch. 1.7 - 5. Let be the relation “congruence modulo ”...Ch. 1.7 - In Exercises 610, a relation R is defined on the...Ch. 1.7 - In Exercises 610, a relation R is defined on the...Ch. 1.7 - In Exercises 610, a relation R is defined on the...Ch. 1.7 - In Exercises 610, a relation R is defined on the...Ch. 1.7 - In Exercises , a relation is defined on the set ...Ch. 1.7 - Let be a relation defined on the set of all...Ch. 1.7 - Let and be lines in a plane. Decide in each case...Ch. 1.7 - 13. Consider the set of all nonempty subsets of ....Ch. 1.7 - In each of the following parts, a relation is...Ch. 1.7 - Let A=R0, the set of all nonzero real numbers, and...Ch. 1.7 - 16. Let and define on by if and only if ....Ch. 1.7 - In each of the following parts, a relation R is...Ch. 1.7 - Let (A) be the power set of the nonempty set A,...Ch. 1.7 - For each of the following relations R defined on...Ch. 1.7 - Give an example of a relation R on a nonempty set...Ch. 1.7 - 21. A relation on a nonempty set is called...Ch. 1.7 - A relation R on a nonempty set A is called...Ch. 1.7 - A relation R on a nonempty set A is called...Ch. 1.7 - For any relation on the nonempty set, the inverse...Ch. 1.7 - 25. Let , , and . Write out and .
Ch. 1.7 - 26. Let , , and . Write out and .
Ch. 1.7 - Prove Theorem 1.40: If is an equivalence relation...Ch. 1.7 - 28. Let , and . Define the relation R on A by if...Ch. 1.7 - 29. Suppose , , represents a partition of the...Ch. 1.7 - Suppose thatis an onto mapping from to. Prove that...

Find more solutions based on key concepts

Show solutions For Problems 15-26, simplify each of the numerical expressions. [48+(73)]+74

Intermediate Algebra

Critical Thinking Let r be a binomial random variable representing the number of successes out of n trials. (a)...

Understanding Basic Statistics

Let V be the volume of the solid that lies under the graph of f(x,y)=52x2y2 and above the rectangle given by 2 ...

Multivariable Calculus

Inventory Management The annual inventory cost C for a manufacturer is C=1,008,000Q+6.3Q where Q is the order s...

Calculus: Early Transcendental Functions

Evaluate the expression sin Exercises 116. 33

Finite Mathematics and Applied Calculus (MindTap Course List)

Give the exact value of each of the following. sin2

Trigonometry (MindTap Course List)

34. Flight A kite is 30 ft high and is moving horizontally at a rate of 10 ft/min. If the kite string is taut, ...

Mathematical Applications for the Management, Life, and Social Sciences

The number of requests for assistance received by a towing service is a Poisson process with rate = 4 per hour...

Probability and Statistics for Engineering and the Sciences

Find dy/dx by implicit differentiation. x3xy2+y3=1

Calculus (MindTap Course List)

Use Exhibit 20-5, Corporate Bond Quotation Table, on page 687 to fill in the blanks for Exercises 1-10. 8. Whic...

Contemporary Mathematics for Business & Consumers

Round each result to three significant digits when necessary: Change 10LtomL.

Elementary Technical Mathematics

Equations of Planes Find an equation of the plane that passes through the points P, Q, and R. 52. P(4, 0, 0), Q...

Precalculus: Mathematics for Calculus (Standalone Book)

Show that the curves y = ex and y = ex touch the curve y = ex sin x at its inflection points.

Single Variable Calculus: Early Transcendentals, Volume I

Find an equation of the tangent to the curve at the given point. Then graph the curve and the tangent. 10. x = ...

Calculus: Early Transcendentals

Given: In ABC,AD bisects BAC AB=20 and AC=16 Find: DC and DB

Elementary Geometry For College Students, 7e

SOC The survey mentioned in problem 6.5 found that 25 of the 178 households consisted of unmarried couples who ...

Essentials Of Statistics

In Exercises 13 to 22, insert either or in the blank space between the sets to make a true statement. { x | x...

Mathematical Excursions (MindTap Course List)

If f0(x) = x2 and fn+1(x) = f0(fn(x)) for n = 0, 1, 2, , find a formula for fn(x).

Single Variable Calculus

A lax form asks people to identify their age. annual income, number of dependents, and social security number. ...

Essentials of Statistics for The Behavioral Sciences (MindTap Course List)

In Exercises 7-10, solve for x or y. x+(5)2=7

Calculus: An Applied Approach (MindTap Course List)

Brunt, Rhee, and Zhong (2008) surveyed 557 undergraduate college students to examine their weight status, healt...

Statistics for The Behavioral Sciences (MindTap Course List)

In Exercises 5762, sketch the straight line defined by the given linear equation by finding the x- and y-interc...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Finding Points of Intersection In Exercises 15-18, find the points or intersection of the graphs of the equatio...

Calculus: Early Transcendental Functions (MindTap Course List)

In Exercises 5-8, let Z be the standard normal variable. Make a rough sketch of the appropriate region under th...

Finite Mathematics for the Managerial, Life, and Social Sciences

Finding Parametric Equations In Exercises 51-54, find two different sets of parametric equations for the rectan...

Calculus of a Single Variable

Find the area of the region that lies inside both curves. 32. r = 3 + 2 cos , r = 3 + 2 sin

Single Variable Calculus: Early Transcendentals

In Exercises 9 to 12, use the Law of Sines or the Law of cosines to find the indicated length of side or angle ...

Elementary Geometry for College Students

The point P graphed at the right has spherical coordinates:

Study Guide for Stewart's Multivariable Calculus, 8th

Find for x = 3t2 + 1, y = t6 + 6t5.
t4 + 5t3
4t3 + 15t2

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

The U.S. Department of Health and Human Services reported the estimated percentage of U.S. households with only...

Introduction To Statistics And Data Analysis

Practice Find the slope of the line passing through each pair of points, if possible. P(2,5);Q(3,10)

College Algebra (MindTap Course List)

Think About It How can two sets of parametric equations represent die same graph but different curves

Calculus (MindTap Course List)

In the following table, the radii and heights of cylinders are given. Determine the volumes of the cylinders. R...

Mathematics For Machine Technology

The results of a national survey showed that on average, adults sleep 6.9 hours per night. Suppose that the sta...

STATISTICS F/BUSINESS+ECONOMICS-TEXT

In this chapter, we identified the method of authority, the rational method, and the empirical method as techni...

Research Methods for the Behavioral Sciences (MindTap Course List)

Describe the purpose of a phase in a single-case design and explain how patterns within a phase are defined, in...

Research Methods for the Behavioral Sciences (MindTap Course List)

Setting Up a Triple IntegralIn Exercises 13-18, set up a triple integral for the volume of the solid. Do not ev...

Multivariable Calculus

An experiment has three steps with three outcomes possible for the first step, two outcomes possible for the se...

Statistics for Business & Economics, Revised (MindTap Course List)

A Function Given by a Graph The following is the graph of a function f=f(x) Exercises S-15 through S-23 refer t...

Functions and Change: A Modeling Approach to College Algebra (MindTap Course List)

Consider a variation of the PDC decision tree shown in Figure 20.5. The company must first decide whether to un...

Modern Business Statistics with Microsoft Office Excel (with XLSTAT Education Edition Printed Access Card) (MindTap Course List)

Let G(x,y) be “ x2y .” Indicate which of the following statements are true and which are false G(2,3) G(1,1) G ...

Discrete Mathematics With Applications

Lori Jeffrey is a successful sales representative for a major publisher of college textbooks. Historically, Lor...

Essentials Of Statistics For Business & Economics

The mean age of a class of fifteen students is 18.2 years. How old would a sixteenth student have to be for the...

Mathematics: A Practical Odyssey

In Problems 17–20 use the result in Problem 16 to express the given improper integral as a gamma function. Then...

A First Course in Differential Equations with Modeling Applications (MindTap Course List)

Finding the Area of a Triangle: In Exercises 15-18, use a determinant to find the area of the triangle with the...

College Algebra

[T] According to the World Bank, at the end of 2013 (t = 0) the U.S. population was 316 million and was increas...

Calculus Volume 1