   Chapter 14.1, Problem 11E ### Calculus: Early Transcendental Fun...

7th Edition
Ron Larson + 1 other
ISBN: 9781337552516

#### Solutions

Chapter
Section ### Calculus: Early Transcendental Fun...

7th Edition
Ron Larson + 1 other
ISBN: 9781337552516
Textbook Problem

# Evaluate the iterated integral: ∫ 0 1 ∫ 0 2 ( x + y ) d y d x

To determine

To calculate: The value of integral, 0102(x+y)dydx.

Explanation

Given:

The integral is:

0102(x+y)dydx

Formula used:

Use the below formulas:

xndx=xn+1n+1+C

where C is integration constant.

Calculation:

Here, in the question, the integration is performed with respect to y, so the variable x is treated to be constant.

So,

0102(x+y)dydx=01(02xdy+02ydy)dx=01([xy]02+[<

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Answers to Your Study Problems

Solve them all with bartleby. Boost your grades with guidance from subject experts covering thousands of textbooks. All for just \$9.99/month

Get As ASAP

## Additional Math Solutions

#### Find more solutions based on key concepts 