BuyFindarrow_forward

Algebra and Trigonometry (MindTap ...

4th Edition
James Stewart + 2 others
ISBN: 9781305071742

Solutions

Chapter
Section
BuyFindarrow_forward

Algebra and Trigonometry (MindTap ...

4th Edition
James Stewart + 2 others
ISBN: 9781305071742
Textbook Problem

DISCUSS ■ DISCOVER: Why Is ( n r ) the Same as C ( n , r ) ? This exercise explains why the binomial coefficients ( n r ) that appear in the expression of ( x + y ) n are the same as C ( n , r ) , the number of ways of choosing r objects from n objects. First, note that expanding a binomial using only the Distributive Property gives

( x + y ) 2 = ( x + y ) ( x + y ) = ( x + y ) x + ( x + y ) y = x x + x y + y x + y y ( x + y ) 3 = ( x + y ) ( x x + x y + y x + y y )

= x x x + x x y + x y x + x y y + y x x + y x y + y y x + y y y

(a) Expand ( x + y ) 5 using only the Distribution Property.

(b) Write all the terms that represent x 2 y 3 . These are all the terms that contain two x ’s and three y ’s.

(c) Note that the two x ’s appear in all possible positions. Conclude that the number of terms that represent x 2 y 3 is C ( 5 , 2 ) .

(d) In general, explain why ( n r ) in the Binomial Theorem is the same as C ( n , r ) .

To determine

(a)

To find:

The expansion of the expression using only the Distributive Property.

Explanation

Given:

The expression is (x+y)5 and expansion by using the Distributive property is,

(x+y)2=(x+y)(x+y)=(x+y)x+(x+y)y=xx+xy+yx+yy(x+y)3=(x+y)(xx+xy+yx+yy)=xxx+xxy+xyx+xyy+yxx+yxy+yyx+yyy

Calculation:

Expand the expression (x+y)5 by using the Distributive property.

(x+y)5=(x+y)(x+y)(x+y)(x+y)(x+y)=(x+y)(x+y)(x+y)x+(x+y)(x+y)(x+y)y=[(x+y)(x+y)(x+y)xx+(x+y)(x+y)(x+y)yx+(x+y)(x+y)(x+y)xy+(x+y)(x+y)(x+y)yy]

Use the Distributive Property again.

(x+y)5=[(x+y)(x+y)(x+y)xx+(x+y)(x+y)(x+y)yx+(x+y)(x+y)(x+y)xy+(x+y)(x+y)(x+y)yy]=[(x+y)(x+y)xxx+(x+y)(x+y)yxx+(x+y)(x+y)xyx+(x+y)(x+y)yyx+(x+y)(x+y)xxy+(x+y)(x+y)yxy+(x+y)(x+y)xyy+(x+y)(x+y)yyy]

Again use the Distributive Property

To determine

(b)

To find:

All the terms that represent x2y3 together.

To determine

(c)

To conclude:

The number of terms representing x2y3 is C(5,2).

To determine

(d)

To explain:

The reason that (nr) in the Binomial theorem is same as C(n,r).

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 14 Solutions

Show all chapter solutions add
Sect-14.1 P-11ESect-14.1 P-12ESect-14.1 P-13ESect-14.1 P-14ESect-14.1 P-15ESect-14.1 P-16ESect-14.1 P-17ESect-14.1 P-18ESect-14.1 P-19ESect-14.1 P-20ESect-14.1 P-21ESect-14.1 P-22ESect-14.1 P-23ESect-14.1 P-24ESect-14.1 P-25ESect-14.1 P-26ESect-14.1 P-27ESect-14.1 P-28ESect-14.1 P-29ESect-14.1 P-30ESect-14.1 P-31ESect-14.1 P-32ESect-14.1 P-33ESect-14.1 P-34ESect-14.1 P-35ESect-14.1 P-36ESect-14.1 P-37ESect-14.1 P-38ESect-14.1 P-39ESect-14.1 P-40ESect-14.1 P-41ESect-14.1 P-42ESect-14.1 P-43ESect-14.1 P-44ESect-14.1 P-45ESect-14.1 P-46ESect-14.1 P-47ESect-14.1 P-48ESect-14.1 P-49ESect-14.1 P-50ESect-14.1 P-51ESect-14.1 P-52ESect-14.1 P-53ESect-14.1 P-54ESect-14.1 P-55ESect-14.1 P-56ESect-14.1 P-57ESect-14.1 P-58ESect-14.1 P-59ESect-14.1 P-60ESect-14.1 P-61ESect-14.1 P-62ESect-14.1 P-63ESect-14.1 P-64ESect-14.1 P-65ESect-14.1 P-66ESect-14.1 P-67ESect-14.1 P-68ESect-14.1 P-69ESect-14.1 P-70ESect-14.1 P-71ESect-14.1 P-72ESect-14.1 P-73ESect-14.1 P-74ESect-14.1 P-75ESect-14.1 P-76ESect-14.1 P-77ESect-14.1 P-78ESect-14.1 P-79ESect-14.1 P-80ESect-14.1 P-81ESect-14.1 P-82ESect-14.1 P-83ESect-14.1 P-84ESect-14.1 P-85ESect-14.1 P-86ESect-14.1 P-87ESect-14.1 P-88ESect-14.1 P-89ESect-14.1 P-90ESect-14.1 P-91ESect-14.1 P-92ESect-14.1 P-93ESect-14.1 P-94ESect-14.2 P-1ESect-14.2 P-2ESect-14.2 P-3ESect-14.2 P-4ESect-14.2 P-5ESect-14.2 P-6ESect-14.2 P-7ESect-14.2 P-8ESect-14.2 P-9ESect-14.2 P-10ESect-14.2 P-11ESect-14.2 P-12ESect-14.2 P-13ESect-14.2 P-14ESect-14.2 P-15ESect-14.2 P-16ESect-14.2 P-17ESect-14.2 P-18ESect-14.2 P-19ESect-14.2 P-20ESect-14.2 P-21ESect-14.2 P-22ESect-14.2 P-23ESect-14.2 P-24ESect-14.2 P-25ESect-14.2 P-26ESect-14.2 P-27ESect-14.2 P-28ESect-14.2 P-29ESect-14.2 P-30ESect-14.2 P-31ESect-14.2 P-32ESect-14.2 P-33ESect-14.2 P-34ESect-14.2 P-35ESect-14.2 P-36ESect-14.2 P-37ESect-14.2 P-38ESect-14.2 P-39ESect-14.2 P-40ESect-14.2 P-41ESect-14.2 P-42ESect-14.2 P-43ESect-14.2 P-44ESect-14.2 P-45ESect-14.2 P-46ESect-14.2 P-47ESect-14.2 P-48ESect-14.2 P-49ESect-14.2 P-50ESect-14.2 P-51ESect-14.2 P-52ESect-14.2 P-53ESect-14.2 P-54ESect-14.2 P-55ESect-14.2 P-56ESect-14.2 P-57ESect-14.2 P-58ESect-14.2 P-59ESect-14.2 P-60ESect-14.2 P-61ESect-14.2 P-62ESect-14.2 P-63ESect-14.2 P-64ESect-14.2 P-65ESect-14.2 P-66ESect-14.2 P-67ESect-14.2 P-68ESect-14.3 P-1ESect-14.3 P-2ESect-14.3 P-3ESect-14.3 P-4ESect-14.3 P-5ESect-14.3 P-6ESect-14.3 P-7ESect-14.3 P-8ESect-14.3 P-9ESect-14.3 P-10ESect-14.3 P-11ESect-14.3 P-12ESect-14.3 P-13ESect-14.3 P-14ESect-14.3 P-15ESect-14.3 P-16ESect-14.3 P-17ESect-14.3 P-18ESect-14.3 P-19ESect-14.3 P-20ESect-14.3 P-21ESect-14.3 P-22ESect-14.3 P-23ESect-14.3 P-24ESect-14.3 P-25ESect-14.3 P-26ESect-14.3 P-27ESect-14.3 P-28ESect-14.3 P-29ESect-14.3 P-30ESect-14.3 P-31ESect-14.3 P-32ESect-14.3 P-33ESect-14.3 P-34ESect-14.3 P-35ESect-14.3 P-36ESect-14.3 P-37ESect-14.3 P-38ESect-14.3 P-39ESect-14.3 P-40ESect-14.3 P-41ESect-14.3 P-42ESect-14.3 P-43ESect-14.4 P-1ESect-14.4 P-2ESect-14.4 P-3ESect-14.4 P-4ESect-14.4 P-5ESect-14.4 P-6ESect-14.4 P-7ESect-14.4 P-8ESect-14.4 P-9ESect-14.4 P-10ESect-14.4 P-11ESect-14.4 P-12ESect-14.4 P-13ESect-14.4 P-14ESect-14.4 P-15ESect-14.4 P-16ESect-14.4 P-17ESect-14.4 P-18ESect-14.4 P-19ESect-14.4 P-20ESect-14.4 P-21ESect-14.4 P-22ESect-14.4 P-23ESect-14.4 P-24ESect-14.4 P-25ESect-14.4 P-26ESect-14.4 P-27ESect-14.4 P-28ESect-14.4 P-29ESect-14.4 P-30ESect-14.4 P-31ESect-14.CR P-1CCSect-14.CR P-2CCSect-14.CR P-3CCSect-14.CR P-4CCSect-14.CR P-5CCSect-14.CR P-6CCSect-14.CR P-7CCSect-14.CR P-8CCSect-14.CR P-9CCSect-14.CR P-1ESect-14.CR P-2ESect-14.CR P-3ESect-14.CR P-4ESect-14.CR P-5ESect-14.CR P-6ESect-14.CR P-7ESect-14.CR P-8ESect-14.CR P-9ESect-14.CR P-10ESect-14.CR P-11ESect-14.CR P-12ESect-14.CR P-13ESect-14.CR P-14ESect-14.CR P-15ESect-14.CR P-16ESect-14.CR P-17ESect-14.CR P-18ESect-14.CR P-19ESect-14.CR P-20ESect-14.CR P-21ESect-14.CR P-22ESect-14.CR P-23ESect-14.CR P-24ESect-14.CR P-25ESect-14.CR P-26ESect-14.CR P-27ESect-14.CR P-28ESect-14.CR P-29ESect-14.CR P-30ESect-14.CR P-31ESect-14.CR P-32ESect-14.CR P-33ESect-14.CR P-34ESect-14.CR P-35ESect-14.CR P-36ESect-14.CR P-37ESect-14.CR P-38ESect-14.CR P-39ESect-14.CR P-40ESect-14.CR P-41ESect-14.CR P-42ESect-14.CR P-43ESect-14.CR P-44ESect-14.CR P-45ESect-14.CR P-46ESect-14.CR P-47ESect-14.CR P-48ESect-14.CR P-49ESect-14.CR P-50ESect-14.CT P-1CTSect-14.CT P-2CTSect-14.CT P-3CTSect-14.CT P-4CTSect-14.CT P-5CTSect-14.CT P-6CTSect-14.CT P-7CTSect-14.CT P-8CTSect-14.CT P-9CTSect-14.CT P-10CTSect-14.CT P-11CTSect-14.CT P-12CTSect-14.CT P-13CTSect-14.CT P-14CTSect-14.CT P-15CTSect-14.FOM P-1PSect-14.FOM P-2PSect-14.FOM P-3PSect-14.FOM P-5PSect-14.FOM P-6PSect-14.FOM P-7P