BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Utility Suppose that the utility function for two com modifies is given by U   = x y 2 and that the budget constraint is 3 x   + 6 y =   18 . What values of x and y will maximize utility?

To determine

To calculate: The values of x and y which maximize the utility function for two commodities is U=xy2 and that the budget constraint is 3x+6y=18.

Explanation

Given Information:

The provided utility function is U=xy2 and it is subjected to the constraint 3x+6y=18.

Formula used:

Lagrange Multipliers Method:

According to the Lagrange multipliers method to obtain maxima or minima for a function z=f(x,y) subject to the constraint g(x,y)=0,

Step 1: Find the critical values of f(x,y) using the new variable λ to form the objective function F(x,y,λ)=f(x,y)+λg(x,y).

Step 2: The critical points of f(x,y) are the critical values of F(x,y,λ) which satisfies g(x,y)=0.

Step 3: The critical points of F(x,y,λ) are the points that satisfy:

Fx=0, Fy=0, and Fλ=0, that is, the points which make all the partial derivatives of zero.

For a function f(x,y), the partial derivative of f(x,y) with respect to y is calculated by taking the derivative of f(x,y) with respect to y and keeping the other variable x constant. The partial derivative of f(x,y) with respect to y is denoted by fy.

Power of x rule for a real number n is such that, if f(x)=xn then f(x)=nxn1.

Constant function rule for a constant c is such that, if f(x)=c then f(x)=0.

Coefficient rule for a constant c is such that, if f(x)=cu(x), where u(x) is a differentiable function of x, then f(x)=cu(x).

Calculation:

Consider the function, U=xy2.

The provided constraint is 3x+6y=18.

According to the Lagrange multipliers method,

The objective function is F(x,y,λ)=f(x,y)+λg(x,y).

Here, f(x,y)=xy2 and g(x,y)=3x+6y18.

Substitute xy2 for f(x,y) and 3x+6y18 for g(x,y) in F(x,y,λ)=f(x,y)+λg(x,y).

F(x,y,λ)=xy2+λ(3x+6y18)

Since, the critical points of F(x,y,λ) are the points that satisfy:

Fx=0, Fy=0, and Fλ=0.

Recall that, for a function f(x,y), the partial derivative of f(x,y) with respect to y is calculated by taking the derivative of f(x,y) with respect to y and keeping the other variable x constant

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 14 Solutions

Show all chapter solutions add
Sect-14.1 P-10ESect-14.1 P-11ESect-14.1 P-12ESect-14.1 P-13ESect-14.1 P-14ESect-14.1 P-15ESect-14.1 P-16ESect-14.1 P-17ESect-14.1 P-18ESect-14.1 P-19ESect-14.1 P-20ESect-14.1 P-21ESect-14.1 P-22ESect-14.1 P-23ESect-14.1 P-24ESect-14.1 P-25ESect-14.1 P-27ESect-14.1 P-28ESect-14.1 P-29ESect-14.1 P-30ESect-14.1 P-31ESect-14.1 P-32ESect-14.1 P-33ESect-14.1 P-34ESect-14.1 P-35ESect-14.1 P-36ESect-14.1 P-37ESect-14.1 P-38ESect-14.2 P-1CPSect-14.2 P-2CPSect-14.2 P-3CPSect-14.2 P-4CPSect-14.2 P-5CPSect-14.2 P-1ESect-14.2 P-2ESect-14.2 P-3ESect-14.2 P-4ESect-14.2 P-5ESect-14.2 P-6ESect-14.2 P-7ESect-14.2 P-8ESect-14.2 P-9ESect-14.2 P-10ESect-14.2 P-11ESect-14.2 P-12ESect-14.2 P-13ESect-14.2 P-14ESect-14.2 P-15ESect-14.2 P-16ESect-14.2 P-17ESect-14.2 P-18ESect-14.2 P-19ESect-14.2 P-20ESect-14.2 P-21ESect-14.2 P-22ESect-14.2 P-23ESect-14.2 P-24ESect-14.2 P-25ESect-14.2 P-26ESect-14.2 P-27ESect-14.2 P-28ESect-14.2 P-29ESect-14.2 P-30ESect-14.2 P-31ESect-14.2 P-32ESect-14.2 P-33ESect-14.2 P-34ESect-14.2 P-35ESect-14.2 P-36ESect-14.2 P-37ESect-14.2 P-38ESect-14.2 P-39ESect-14.2 P-40ESect-14.2 P-41ESect-14.2 P-42ESect-14.2 P-43ESect-14.2 P-44ESect-14.2 P-45ESect-14.2 P-46ESect-14.2 P-47ESect-14.2 P-48ESect-14.2 P-49ESect-14.2 P-50ESect-14.2 P-51ESect-14.2 P-52ESect-14.2 P-53ESect-14.2 P-54ESect-14.2 P-55ESect-14.2 P-56ESect-14.3 P-1CPSect-14.3 P-2CPSect-14.3 P-3CPSect-14.3 P-1ESect-14.3 P-2ESect-14.3 P-3ESect-14.3 P-4ESect-14.3 P-5ESect-14.3 P-6ESect-14.3 P-7ESect-14.3 P-8ESect-14.3 P-9ESect-14.3 P-10ESect-14.3 P-11ESect-14.3 P-12ESect-14.3 P-13ESect-14.3 P-14ESect-14.3 P-15ESect-14.3 P-16ESect-14.3 P-17ESect-14.3 P-18ESect-14.3 P-19ESect-14.3 P-20ESect-14.3 P-21ESect-14.3 P-22ESect-14.3 P-23ESect-14.3 P-24ESect-14.3 P-25ESect-14.3 P-26ESect-14.3 P-27ESect-14.3 P-28ESect-14.3 P-29ESect-14.3 P-30ESect-14.4 P-1CPSect-14.4 P-2CPSect-14.4 P-3CPSect-14.4 P-4CPSect-14.4 P-1ESect-14.4 P-2ESect-14.4 P-3ESect-14.4 P-4ESect-14.4 P-5ESect-14.4 P-6ESect-14.4 P-7ESect-14.4 P-8ESect-14.4 P-9ESect-14.4 P-10ESect-14.4 P-11ESect-14.4 P-12ESect-14.4 P-13ESect-14.4 P-14ESect-14.4 P-15ESect-14.4 P-16ESect-14.4 P-17ESect-14.4 P-18ESect-14.4 P-19ESect-14.4 P-20ESect-14.4 P-21ESect-14.4 P-22ESect-14.4 P-23ESect-14.4 P-24ESect-14.4 P-25ESect-14.4 P-26ESect-14.4 P-27ESect-14.4 P-28ESect-14.4 P-29ESect-14.4 P-30ESect-14.4 P-31ESect-14.4 P-32ESect-14.4 P-34ESect-14.4 P-35ESect-14.4 P-36ESect-14.5 P-1CPSect-14.5 P-2CPSect-14.5 P-3CPSect-14.5 P-4CPSect-14.5 P-1ESect-14.5 P-2ESect-14.5 P-3ESect-14.5 P-4ESect-14.5 P-5ESect-14.5 P-6ESect-14.5 P-7ESect-14.5 P-8ESect-14.5 P-9ESect-14.5 P-10ESect-14.5 P-11ESect-14.5 P-12ESect-14.5 P-13ESect-14.5 P-14ESect-14.5 P-15ESect-14.5 P-16ESect-14.5 P-17ESect-14.5 P-18ESect-14.5 P-19ESect-14.5 P-20ESect-14.5 P-21ESect-14.5 P-22ESect-14.5 P-23ESect-14.5 P-24ESect-14.5 P-25ESect-14.5 P-26ECh-14 P-1RECh-14 P-2RECh-14 P-3RECh-14 P-4RECh-14 P-5RECh-14 P-6RECh-14 P-7RECh-14 P-8RECh-14 P-9RECh-14 P-10RECh-14 P-11RECh-14 P-12RECh-14 P-13RECh-14 P-14RECh-14 P-15RECh-14 P-16RECh-14 P-17RECh-14 P-18RECh-14 P-19RECh-14 P-20RECh-14 P-21RECh-14 P-22RECh-14 P-23RECh-14 P-24RECh-14 P-25RECh-14 P-26RECh-14 P-27RECh-14 P-28RECh-14 P-29RECh-14 P-30RECh-14 P-31RECh-14 P-32RECh-14 P-33RECh-14 P-34RECh-14 P-35RECh-14 P-36RECh-14 P-1TCh-14 P-2TCh-14 P-3TCh-14 P-4TCh-14 P-5TCh-14 P-6TCh-14 P-7TCh-14 P-8TCh-14 P-9TCh-14 P-10T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Dimension of a Matrix State the dimension of the matrix. 6. [154002113]

Precalculus: Mathematics for Calculus (Standalone Book)

Evaluate the indefinite integral. xx2+4dx

Single Variable Calculus: Early Transcendentals, Volume I

Find the inverse function of f(x)x2+2forx0.

Calculus: An Applied Approach (MindTap Course List)

Solve the equations in Exercises 126. x+4x+1+x+43x=0

Finite Mathematics and Applied Calculus (MindTap Course List)

In Exercises 75-98, perform the indicated operations and/or simplify each expression. 86. (5x + 2)(3x 4)

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

If f(x) = 2e3x, f(x) = a) 2e3x b) 2xe3x c) 6e3x d) 6xe3x

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th