   Chapter 15, Problem 120AP ### Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425

#### Solutions

Chapter
Section ### Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425
Textbook Problem
17 views

# Calculate the number of moles of each ion present in each of the following solutions. a. 1.25 L of 0.250 M Na1PO4 solution b. 3.5 mL of 6.0 M H2S O4 solution c. 25 mL of 0.15 M AlCI solution d. 1.50 L of 1.25 M BaCI2 solution

Interpretation Introduction

(a)

Interpretation:

The number of moles of each ion present in 1.25L of 0.250MNa3PO4 solution is to be calculated.

Concept Introduction:

The molarity of a solution is defined as the number of mole of solute dissolved in one liter of the solution. The formula for molarity is given as,

M=nV

Where,

• n represents the number of moles of the solute.
• V represents the volume of the solution.
Explanation

The molarity of Na3PO4 solution is 0.250M.

The volume of Na3PO4 solution is 1.25L.

The number of moles of a solute present in the solution is given as,

n=MV

Where,

• M represents molarity of the solution.
• V represents the volume of the solution.

Substitute the value of molarity and volume of the Na3PO4 solution in the above equation.

n=0.250M1.25L1molL11M=0.3125mol

The number of moles of Na3PO4 present in the given solution is 0.3125mol.

The dissociation of Na3PO4 in water is represented as,

Na3PO4aq3Na+aq+PO43aq

One mole of Na3PO4 produces three moles of Na+ ions

Interpretation Introduction

(b)

Interpretation:

The number of moles of each ion present in 3.5mL of 6.0MH2SO4 solution is to be calculated.

Concept Introduction:

The molarity of a solution is defined as the number of mole of solute dissolved in one liter of the solution. The formula for molarity is given as,

M=nV

Where,

• n represents the number of moles of the solute.
• V represents the volume of the solution.
Interpretation Introduction

(c)

Interpretation:

The number of moles of each ion present in 25mL of 0.15MAlCl3 solution is to be calculated.

Concept Introduction:

The molarity of a solution is defined as the number of mole of solute dissolved in one liter of the solution. The formula for molarity is given as,

M=nV

Where,

• n represents the number of moles of the solute.
• V represents the volume of the solution.
Interpretation Introduction

(d)

Interpretation:

The number of moles of each ion present in 1.50L of 1.25MBaCl2 solution is to be calculated.

Concept Introduction:

The molarity of a solution is defined as the number of mole of solute dissolved in one liter of the solution. The formula for molarity is given as,

M=nV

Where,

• n represents the number of moles of the solute.
• V represents the volume of the solution.

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started 