   Chapter 15, Problem 126AP ### Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425

#### Solutions

Chapter
Section ### Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425
Textbook Problem
1445 views

# An aqueous solution of ammonium sulfide is mixed with an aqueous solution of iron(IlI) chloride. a. Write a balanced molecular equation, complete ionic equat ion, and net ionic equation for the two solutions mixed above. Include all phases. b. If 50.0 mL of 0.5(X) M ammonium sulfide and 100.0 mL of 0.250 M iron(IIl) chloride arc mixed, how many grams of precipitate will form? c. What are the concentrations of ammonium ion and iron(III) ion left in solution after the reaction is complete? d. In part b. you started with 100.0 mL of 0.250 M iron(III) chloride. How would you prepare such a solution in the lab if you started with solid iron(III) chloride?

Interpretation Introduction

(a)

Interpretation:

The balanced molecular equation, complete ionic equation and net ionic equation for the given reaction mixture is to be written.

Concept Introduction:

A balanced chemical equation represents an equation in which all the reactants and products are written with their stoichiometric coefficient and physical states. The number of atoms of an element on the both sides of the equation is equal.

The complete ionic equation is the chemical equation of a reaction in which the ionic compounds are written in their dissociated ionic forms.

The net ionic equation is the one in which the common ions present on both the sides of the complete ionic reaction get eliminated and only the chemical species actually participating in the reaction is represented.

Explanation

The unbalanced chemical reaction between the ammonium sulfide and iron III chloride is represented as,

NH42Saq+FeCl3aqNH4Claq+Fe2S3s

The number of atoms of elements on both sides of the equation is not equal. Therefore, multiply NH42S by three, FeCl3 by two, NH4Cl by six for the balanced chemical reaction.

The balanced chemical reaction between the ammonium sulfide and iron III chloride is represented as,

3NH42Saq+2FeCl3aq6NH4Claq+Fe2S3s

The complete ionic equation between

Interpretation Introduction

(b)

Interpretation:

The mass of precipitate formed on mixing given solutions of ammonium sulfide and iron III chloride is to be calculated.

Concept Introduction:

The molarity of a solution is defined as the number of moles of solute dissolved in one liter of the solution. The formula for molarity is given as,

M=nV

Where,

• n represents the number of moles of the solute.
• V represents the volume of the solution.

The limiting reagent of a reaction is that reactant of the reaction that controls the amount of product formed. The limiting agents limits the amount of product and by adding some more amount of the limiting reagent in the reaction mixture, the amount of product can be increased.

Interpretation Introduction

(c)

Interpretation:

The concentration of ammonium ion and ironIII ion left in solution after the completion of the reaction is to be calculated.

Concept Introduction:

The molarity of a solution is defined as the number of mole of solute dissolved in one liter of the solution. The formula for molarity is given as,

M=nV

Where,

• n represents the number of moles of the solute.
• V represents the volume of the solution.
Interpretation Introduction

(d)

Interpretation:

The mass of solid iron III chloride required to prepare the given solution of iron III chloride is to be calculated.

Concept Introduction:

The molarity of a solution is defined as the number of mole of solute dissolved in one liter of the solution. The formula for molarity is given as,

M=mMmV

Where,

• m represents the mass of the solute.
• V represents the volume of the solution.
• Mm represents the molar mass of the solute.

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started 