General, Organic, and Biological Chemistry
General, Organic, and Biological Chemistry
7th Edition
ISBN: 9781285853918
Author: H. Stephen Stoker
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 15, Problem 15.37EP

(a)

Interpretation Introduction

Interpretation:

Structural formula for the given ketone has to be drawn.

Concept Introduction:

Structure of the ketone can be drawn from the IUPAC name.  In the IUPAC name, the parent chain of carbon atom can be identified and then the substituents present in it can also be identified.  With these information, the structure for the given compound can be drawn.  In a ketone the counting has to be done so that the carbonyl carbon atom gets the least numbering.

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • • Expanded structural formula
  • • Condensed structural formula
  • • Skeletal structural formula
  • • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  1

(a)

Expert Solution
Check Mark

Answer to Problem 15.37EP

The structural formula for 3-methyl-2-pentanone is,

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  2

Explanation of Solution

The given name of the compound is 3-methyl-2-pentanone.  From the name it is understood that the parent carbon chain is pentane and it contains five carbon atoms.  The parent chain can be drawn as shown below,

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  3

From the name of the given ketone, the substituents that are present can be identified.  In this case, the substituent is a methyl group on third carbon atom.  The carbonyl carbon atom is the second carbon atom.

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  4

Carbon atom has a valence of four.  Hence, carbon atom can form four covalent bonds.  The remaining bonds are satisfied by hydrogen atom.  The structure is obtained as shown below,

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  5

Conclusion

Structural formula for the given ketone is drawn.

(b)

Interpretation Introduction

Interpretation:

Structural formula for the given ketone has to be drawn.

Concept Introduction:

Structure of the ketone can be drawn from the IUPAC name.  In the IUPAC name, the parent chain of carbon atom can be identified and then the substituents present in it can also be identified.  With these information, the structure for the given compound can be drawn.  In a ketone the counting has to be done so that the carbonyl carbon atom gets the least numbering.

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • • Expanded structural formula
  • • Condensed structural formula
  • • Skeletal structural formula
  • • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  6

(b)

Expert Solution
Check Mark

Answer to Problem 15.37EP

The structural formula for 3-hexanone is,

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  7

Explanation of Solution

The given name of the compound is 3-hexanone.  From the name it is understood that the parent carbon chain is hexane and it contains six carbon atoms.  The parent chain can be drawn as shown below,

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  8

From the name of the given ketone, the substituents that are present can be identified.  In this case, there are no substituents.  The carbonyl carbon atom is the third carbon atom.

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  9

Carbon atom has a valence of four.  Hence, carbon atom can form four covalent bonds.  The remaining bonds are satisfied by hydrogen atom.  The structure is obtained as shown below,

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  10

Conclusion

Structural formula for the given ketone is drawn.

(c)

Interpretation Introduction

Interpretation:

Structural formula for the given ketone has to be drawn.

Concept Introduction:

Structure of the ketone can be drawn from the IUPAC name.  In the IUPAC name, the parent chain of carbon atom can be identified and then the substituents present in it can also be identified.  With these information, the structure for the given compound can be drawn.  In a ketone the counting has to be done so that the carbonyl carbon atom gets the least numbering.

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • • Expanded structural formula
  • • Condensed structural formula
  • • Skeletal structural formula
  • • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  11

(c)

Expert Solution
Check Mark

Answer to Problem 15.37EP

The structural formula for cyclobutanone is,

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  12

Explanation of Solution

The given name of the compound is cyclobutanone.  From the name it is understood that the parent carbon chain is cyclic carbon chain that contains four carbon atoms.  The parent chain can be drawn as shown below,

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  13

From the name of the given ketone, the substituents that are present can be identified.  In this case, there are no substituents.  The carbonyl carbon atom is any one of the carbon atom.  Therefore, the structural formula of cyclobutanone can be drawn as shown below,

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  14

Conclusion

Structural formula for the given ketone is drawn.

(d)

Interpretation Introduction

Interpretation:

Structural formula for the given ketone has to be drawn.

Concept Introduction:

Structure of the ketone can be drawn from the IUPAC name.  In the IUPAC name, the parent chain of carbon atom can be identified and then the substituents present in it can also be identified.  With these information, the structure for the given compound can be drawn.  In a ketone the counting has to be done so that the carbonyl carbon atom gets the least numbering.

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • • Expanded structural formula
  • • Condensed structural formula
  • • Skeletal structural formula
  • • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  15

(d)

Expert Solution
Check Mark

Answer to Problem 15.37EP

The structural formula for chloropropanone is,

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  16

Explanation of Solution

The given name of the compound is chloropropanone.  From the name it is understood that the parent carbon chain is propane and it contains three carbon atoms.  The parent chain can be drawn as shown below,

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  17

From the name of the given ketone, the substituents that are present can be identified.  In this case a chlorine atom is present as a substituent.  The carbonyl carbon atom is the second carbon atom as that is the only possibility.

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  18

Carbon atom has a valence of four.  Hence, carbon atom can form four covalent bonds.  The remaining bonds are satisfied by hydrogen atom.  The structure is obtained as shown below,

General, Organic, and Biological Chemistry, Chapter 15, Problem 15.37EP , additional homework tip  19

Conclusion

Structural formula for the given ketone is drawn.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Draft Two structural features determine the chemistry and properties of aldehydes and ketones ?
What are fats and oils? a. ketones formed of two or more esters b. any large molecular weight organic compound that has been saturated c. esters formed from glycerol and three carboxylic acids d. polymers of repeating aromatic hydrocarbons
The hydration of an alkene produces which organic functional group? a. alkene b. carboxylic acid c. aldehyde d. ether e. alcohol

Chapter 15 Solutions

General, Organic, and Biological Chemistry

Ch. 15.4 - Prob. 3QQCh. 15.4 - Prob. 4QQCh. 15.4 - Prob. 5QQCh. 15.5 - Prob. 1QQCh. 15.5 - Prob. 2QQCh. 15.5 - Prob. 3QQCh. 15.5 - Prob. 4QQCh. 15.5 - Prob. 5QQCh. 15.6 - Prob. 1QQCh. 15.6 - Prob. 2QQCh. 15.6 - Prob. 3QQCh. 15.7 - Prob. 1QQCh. 15.7 - Prob. 2QQCh. 15.8 - Prob. 1QQCh. 15.8 - Prob. 2QQCh. 15.9 - Prob. 1QQCh. 15.9 - Prob. 2QQCh. 15.10 - Prob. 1QQCh. 15.10 - Prob. 2QQCh. 15.10 - Prob. 3QQCh. 15.10 - Prob. 4QQCh. 15.11 - Prob. 1QQCh. 15.11 - Prob. 2QQCh. 15.11 - Prob. 3QQCh. 15.11 - Prob. 4QQCh. 15.11 - Prob. 5QQCh. 15.12 - Prob. 1QQCh. 15.12 - Prob. 2QQCh. 15 - Prob. 15.1EPCh. 15 - Prob. 15.2EPCh. 15 - Prob. 15.3EPCh. 15 - In terms of polarity, which carbonyl group atom...Ch. 15 - Prob. 15.5EPCh. 15 - What is the geometrical arrangement for the atoms...Ch. 15 - Prob. 15.7EPCh. 15 - Prob. 15.8EPCh. 15 - Prob. 15.9EPCh. 15 - Prob. 15.10EPCh. 15 - Prob. 15.11EPCh. 15 - Classify each of the following structures as an...Ch. 15 - Prob. 15.13EPCh. 15 - Prob. 15.14EPCh. 15 - Prob. 15.15EPCh. 15 - Prob. 15.16EPCh. 15 - Prob. 15.17EPCh. 15 - Prob. 15.18EPCh. 15 - Prob. 15.19EPCh. 15 - Prob. 15.20EPCh. 15 - Prob. 15.21EPCh. 15 - Prob. 15.22EPCh. 15 - Prob. 15.23EPCh. 15 - Prob. 15.24EPCh. 15 - Prob. 15.25EPCh. 15 - Prob. 15.26EPCh. 15 - Prob. 15.27EPCh. 15 - Prob. 15.28EPCh. 15 - Prob. 15.29EPCh. 15 - Prob. 15.30EPCh. 15 - Prob. 15.31EPCh. 15 - Prob. 15.32EPCh. 15 - Prob. 15.33EPCh. 15 - Prob. 15.34EPCh. 15 - Prob. 15.35EPCh. 15 - Prob. 15.36EPCh. 15 - Prob. 15.37EPCh. 15 - Prob. 15.38EPCh. 15 - Prob. 15.39EPCh. 15 - Prob. 15.40EPCh. 15 - Draw a structural formula for each of the...Ch. 15 - Prob. 15.42EPCh. 15 - Prob. 15.43EPCh. 15 - Prob. 15.44EPCh. 15 - Prob. 15.45EPCh. 15 - Prob. 15.46EPCh. 15 - Prob. 15.47EPCh. 15 - Prob. 15.48EPCh. 15 - Prob. 15.49EPCh. 15 - Prob. 15.50EPCh. 15 - Prob. 15.51EPCh. 15 - Prob. 15.52EPCh. 15 - Prob. 15.53EPCh. 15 - Prob. 15.54EPCh. 15 - Prob. 15.55EPCh. 15 - Prob. 15.56EPCh. 15 - Prob. 15.57EPCh. 15 - Prob. 15.58EPCh. 15 - Prob. 15.59EPCh. 15 - Prob. 15.60EPCh. 15 - Prob. 15.61EPCh. 15 - Prob. 15.62EPCh. 15 - Prob. 15.63EPCh. 15 - Prob. 15.64EPCh. 15 - Prob. 15.65EPCh. 15 - Prob. 15.66EPCh. 15 - Prob. 15.67EPCh. 15 - Which member in each of the following pairs of...Ch. 15 - Prob. 15.69EPCh. 15 - Prob. 15.70EPCh. 15 - Prob. 15.71EPCh. 15 - Prob. 15.72EPCh. 15 - Prob. 15.73EPCh. 15 - Prob. 15.74EPCh. 15 - Prob. 15.75EPCh. 15 - Prob. 15.76EPCh. 15 - Prob. 15.77EPCh. 15 - Prob. 15.78EPCh. 15 - Prob. 15.79EPCh. 15 - What is the chemical formula of the inorganic...Ch. 15 - Prob. 15.81EPCh. 15 - Which of the following compounds would react with...Ch. 15 - Prob. 15.83EPCh. 15 - Prob. 15.84EPCh. 15 - Which of the three compounds pentanal,...Ch. 15 - Prob. 15.86EPCh. 15 - Prob. 15.87EPCh. 15 - Prob. 15.88EPCh. 15 - Prob. 15.89EPCh. 15 - Prob. 15.90EPCh. 15 - Prob. 15.91EPCh. 15 - Prob. 15.92EPCh. 15 - Which carbon atom is the hemiacetal carbon atom in...Ch. 15 - Prob. 15.94EPCh. 15 - Prob. 15.95EPCh. 15 - Prob. 15.96EPCh. 15 - Prob. 15.97EPCh. 15 - Prob. 15.98EPCh. 15 - Prob. 15.99EPCh. 15 - Prob. 15.100EPCh. 15 - Prob. 15.101EPCh. 15 - Prob. 15.102EPCh. 15 - Prob. 15.103EPCh. 15 - Prob. 15.104EPCh. 15 - Prob. 15.105EPCh. 15 - Prob. 15.106EPCh. 15 - Prob. 15.107EPCh. 15 - Prob. 15.108EPCh. 15 - Prob. 15.109EPCh. 15 - Prob. 15.110EPCh. 15 - Prob. 15.111EPCh. 15 - Prob. 15.112EPCh. 15 - Prob. 15.113EPCh. 15 - Prob. 15.114EPCh. 15 - Prob. 15.115EPCh. 15 - Prob. 15.116EPCh. 15 - Prob. 15.117EPCh. 15 - Prob. 15.118EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License