   Chapter 15, Problem 27CR ### Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425

#### Solutions

Chapter
Section ### Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425
Textbook Problem
1 views

# What is one equivalent of an acid? What does an equivalent of a base represent? How is the equivalent weight of an acid or a base related to the substance’s molar mass? Give an example of an acid and a base that have equivalent weights equal to their molar masses. Give an example of an acid and a base that have equivalent weights that are not equal to their molar masses. What is a normal solution of an acid or a base? How is the normality of an acid or a base solution related to its molarity? Give an example of a solution whose normality is equal to its molarity, and an example of a solution whose normality is 1101 the same as its molarity.

Interpretation Introduction

Interpretation:

One equivalent of an acid is to be defined. An equivalent of a base is to be explained. The relation between the equivalent weight of an acid or a base and the substance’s molar mass is to be explained. An example of an acid and a base that have equivalent weights equal to their molar masses is to be stated. An example of an acid and a base that have equivalent weights that are not equal to their molar masses is to be given. The normal solution of an acid or a base is to be defined. The relation between the normality of an acid or a base solution and its molarity is to be explained. An example of a solution that has equal normality and molarity, and an example of a solution that have different normality and molarity is to be stated.

Concept Introduction:

The molarity of a solution is the molar concentration of the solution; it measures the number of moles of solute dissolved in one liter of the solution. The formula for molarity is given as,

M=nV

Where,

• n represents the number of moles of the solute.
• V represents the volume of the solution.

The normality of a solution is referred as the gram equivalent weight of a solute dissolved in one liter of the solution. The normality of solution is given as:

N=neqV

Where,

• neq represents the number of equivalents of the solute.
• V represents the volume of the solution.
Explanation

One equivalent of an acid is defined as amount of the acid solution that has one mole of H+ ion. An equivalent of a base represents a base solution that has one mole of OH ions.

The relation between the equivalent weight of an acid or a base and the substance’s molar mass is represented as,

Meq=Mmn    (1)

Where,

• Mm represents the molar mass of the substance.
• n represents the equivalence factor of the substance.
• Meq represents the equivalent weight of the substance.

The dissociation reaction of HCl in water is represented as:

HClaqH+aq+Claq

The number of H+ ion released by HCl is 1.

Hence the equivalence factor of HCl is 1eqmol1.

The molar mass of HCl is 36.469gmol1.

Substitute the value of Mm and n in the equation (1).

Meq=36.469gmol11eqmol1=36.469geq1

Therefore, HCl has equal molar mass and equivalent weight.

The dissociation reaction of NaOH in water is represented as,

NaOHaqNa+aq+OHaq

The number of OH ion released by NaOH is 1.

Hence the equivalence factor of NaOH is 1eqmol1.

The molar mass of NaOH is 39.9979gmol1.

Substitute the value of Mm and n in the equation (1).

Meq=39.9979gmol11eqmol1=39.9979geq1

Therefore, NaOH has equal molar mass and equivalent weight.

The dissociation reaction of H2SO4 in water is represented as,

H2SO4aq2H+aq+SO42aq

The number of H+ ion released by H2SO4 is 2

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started 