University Physics Volume 1
University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
bartleby

Videos

Textbook Question
Chapter 15, Problem 71CP

Consider the van der Waals potential U ( r ) = U 0 [ ( R 0 r ) 12 2 ( R 0 r ) 6 ] , used to model the potential energy function of two molecules, where the minimum potential is at r = R 0 . Find the force as a function of r. Consider a small displacement R = R 0 + r ' and use the binomial theorem:

   ( 1 + x ) n = 1 + n x + n ( n 1 ) 2 ! x 2 + n ( n 1 ) ( n 2 ) 3 ! x 3 + , to show that the force does approximate a Hooke’s law force.

Blurred answer
Students have asked these similar questions
One description of the potential energy of a diatomic molecule is given by the Lennard–Jones potential,                                            U = (A)/(r12) - (B)/(r6)where A and B are constants and r is the separation distance between the atoms. Find, in terms of A and B, (a) the value r0 at which the energy is a minimum and (b) the energy E required to break up a diatomic molecule.
Consider nitrogen gas in a container at temperature T = 245 K. A molecule’s average kinetic energy is Kavg=3/2kBT.  Calculate the momentum magnitude p of a nitrogen molecule having this kinetic energy.      The momentum magnitude p of the nitrogen molecule is  ______kg⋅m/skg⋅m/s.
The rms (root-mean-square) speed of a diatomic hydrogen molecule at 50∘C∘C is 2000 m/sm/s. Note that 1.0 molmol of diatomic hydrogen at 50∘C∘C has a total translational kinetic energy of 4000 JJ. Diatomic oxygen has a molar mass 16 times that of diatomic hydrogen. The root-mean-square speed vrmsvrms 50∘C∘C is: The total translational kinetic energy of 1.0 mole of diatomic oxygen at 50∘C is: The temperature of the diatomic hydrogen gas sample is increased to 100∘C∘C. The root-mean-square speed vrmsvrms for diatomic hydrogen at 100∘C∘C is:

Chapter 15 Solutions

University Physics Volume 1

Ch. 15 - As you pass a freight truck with a trailer on a...Ch. 15 - Some people modify cars to be much closer to the...Ch. 15 - Describe a system in which elastic potential...Ch. 15 - Explain in terms of energy how dissipative forces...Ch. 15 - The temperature of the atmosphere oscillates from...Ch. 15 - Can this analogy of SHM to circular motion be...Ch. 15 - Can this analogy of SHM to circular motion be...Ch. 15 - Can this analogy of SHM to circular motion be...Ch. 15 - A pendulum clock works by measuring the period of...Ch. 15 - With the use of a phase shift, the position of an...Ch. 15 - Give an example of a damped harmonic oscillator....Ch. 15 - How would a car bounce after a bump under each of...Ch. 15 - Most harmonic oscillators are damped and, if...Ch. 15 - Why are soldiers in general ordered to “route...Ch. 15 - Do you think there is any harmonic motion in the...Ch. 15 - Some engineers use sound to diagnose performance...Ch. 15 - Prove that using x(t)=Asin(t+) will produce the...Ch. 15 - What is the period of 60.0 Hz of electrical power?Ch. 15 - If your heart rate is 150 beats per minute during...Ch. 15 - Find the frequency of a tuning fork that takes...Ch. 15 - A stroboscope is set to flash every 8.00105 s....Ch. 15 - A tire has a tread pattern with a crevice every...Ch. 15 - Each piston of an engine makes a sharp sound every...Ch. 15 - A type of cuckoo clock keeps time by having a mass...Ch. 15 - A mass m0is attached to a spring and hung...Ch. 15 - A 0.500-kg mass suspended from a spring oscillates...Ch. 15 - By how much leeway (both percentage and mass)...Ch. 15 - Fish are hung on a spring scale to determine their...Ch. 15 - It is weigh-in time for the local under-85-kg...Ch. 15 - One type of BB gun uses a spring-driven plunger to...Ch. 15 - When an 80.0-kg man stands on a pogo stick, the...Ch. 15 - A spring has a length of 0.200 m when a 0.300-kg...Ch. 15 - The length of nylon rope from which a mountain...Ch. 15 - The motion of a mass on a spring hung vertically,...Ch. 15 - (a) A novelty clock has a 0.0100-kg-mass object...Ch. 15 - Reciprocating motion uses the rotation of a motor...Ch. 15 - A student stands on the edge of a merry-go-round...Ch. 15 - What is the length of a pendulum that has a period...Ch. 15 - Some people think a pendulum with a period of 1.00...Ch. 15 - What is the period of a 1.00-m-long pendulum?Ch. 15 - How long does it take a child on a swing to...Ch. 15 - The pendulum on a cuckoo clock is 5.00-cm long....Ch. 15 - Two parakeets sit on a swing with their combined...Ch. 15 - (a) A pendulum that has a period of 3.00000 s and...Ch. 15 - A pendulum with a period of 2.00000 s in one...Ch. 15 - (a) What is the effect on the period of a pendulum...Ch. 15 - The amplitude of a lightly damped oscillator...Ch. 15 - How much energy must the shock absorbers of a...Ch. 15 - If a car has a suspension system with a force...Ch. 15 - (a) How much will a spring that has a force...Ch. 15 - Suppose you have a 0.750-kg object on a horizontal...Ch. 15 - Suppose you attach an object with mass m to a...Ch. 15 - A diver on a diving board is undergoing SHM. Her...Ch. 15 - Suppose a diving board with no one on it bounces...Ch. 15 - The device pictured in the following figure...Ch. 15 - A mass is placed on a frictionless, horizontal...Ch. 15 - Find the ratio of the new/old periods of a...Ch. 15 - At what rate will a pendulum clock run on the...Ch. 15 - If a pendulum-driven clock gains 5.00 s/day, what...Ch. 15 - A 2.00-kg object hangs, at rest, on a 1.00-m-long...Ch. 15 - A 2.00-kg object hangs, at rest, on a 1.00-m-long...Ch. 15 - Assume that a pendulum used to drive a grandfather...Ch. 15 - A 2.00-kg block lies at rest on a frictionless...Ch. 15 - A suspension bridge oscillates with an effective...Ch. 15 - Near the top of the Citigroup Center building in...Ch. 15 - Parcels of air (small volumes of air) in a stable...Ch. 15 - Consider the van der Waals potential U(r)=U0[( R 0...Ch. 15 - Suppose the length of a clock’s pendulum is...Ch. 15 - (a) The springs of a pickup truck act like a...

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • A rigid tank of volume V = 0.02 m3 contains carbon monoxide at a temperature of T0 = 25° C and a pressure of P0 = 9.00 × 105 Pa. This molecule should be treated as a diatomic ideal gas with active vibrational modes. a)The temperature of the gas increases by 10° C. Calculate the pressure of the gas in pascal at this increased temperature.  b)Calculate the change to the internal energy of the gas in joules.  c)Calculate the change in the entropy of the gas in joules per kelvin.
    In a gas that is a mixture of water (two H and one O) and carbon dioxide (one C and two O), if the water has average velocity of 327 m/s, what is the average velocity of the carbon dioxide molecule?
    A rigid tank of volume V = 0.014 m3 contains carbon monoxide at a temperature of T0 = 25° C and a pressure of P0 = 9.00 × 105 Pa. This molecule should be treated as a diatomic ideal gas with active vibrational modes.  Part (a)  In this model, how many degrees of freedom does each molecule of carbon monoxide have?   Part (b)  The temperature of the gas increases by 10° C. Select the process that has occurred from the choices below.   Part (c)  Calculate the pressure of the gas in pascal at this increased temperature.  Part (d)  Calculate the change to the internal energy of the gas in joules.   Part (e)  Calculate the change in the entropy of the gas in joules per kelvin.  I know you cannot answer all parts however manyuo can will help
  • Consider two immiscible liquids such as water and oil. If a spherical oil molecule of radius r is taken out of the oil phase and placed in the water phase, the unfavorable energy of this transfer is proportional to the area of the solute (oil) molecule newly exposed to the solvent (water) multiplied by the interfacial energy, i, of the oil-water interface. The interfacial energy of the bulk cyclohexane-water interface is i = 50 mJ m-2, and the radius of a cyclohexane molecule is 0.28 nm. Using Boltzmann distribution, estimate the solubility of cyclohexane in water at 25 C in units of mol L-1.The concentration of water in water phase is 55.5 mol L-1.
    Consider nitrogen gas in a container at temperature T = 245 K. A molecule’s average kinetic energy is Kavg=32kBT.  Calculate the momentum magnitude p of a nitrogen molecule having this kinetic energy.      The momentum magnitude p of the nitrogen molecule is  _____kg⋅m/s.
    You measure the average free path λ and the average collision time τ of the molecules of a diatomic gas of molecular mass 6.00 × 10-²⁵ kg and radius r = 1.0 x 10-¹⁰ m. From these microscopic data can we obtain macroscopic properties such as temperature T and pressure P? If so, consider λ = 4.32 x 10-⁸ m and τ = 3.00 x 10-¹⁰ s and calculate T and P. indicate the correct answer: 1- Not possible2- Yes, T =150 K and P ~ 2.04 atm.3- Yes, T = 150 K and P ~ 4.08 atm.4- Yes, T = 300 K and P ~ 4.08 atm.5- Yes, T = 300 K and P ~ 5.32 atm6- Yes, T = 400 K and P ~ 4.08 atm.7- Yes, T = 400 K and P ~ 5.32 atm.   obs.:  If necessary, consider: R = 8.314 J/mol∙K1 cal = 4.19 Jkb =1,38 x 10⁻²³ m² kg s⁻² K⁻¹
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
    Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
  • Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
    Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY