   Chapter 15, Problem 73QAP ### Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425

#### Solutions

Chapter
Section ### Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425
Textbook Problem
97 views

# 73. What volume of 1.00 M NaOH is required to neutralize each of the following solutions? a. 25.0 mLof 0.154 M acetic acid, HC2H3O2b. 35.0 mL of 0.102 M hydrofluoric acid, HFc. 10.0 mL of 0.143 M phosphoric acid. HPO4d. 35.0 ml. of 0.220 M sulfuric acid, H2SO4

Interpretation Introduction

(a)

Interpretation:

The volume of 1.00M

NaOH required to neutralize the given solution is to be calculated.

25.0mL of 0.154M acetic acid.

Concept Introduction:

The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.

The number of moles is calculated by the formula,

Moles=MassgMolarmass

The molarity is calculated by the formula,

Molarity=NumberofmolesofsoluteVolumeofsolutionL.

Explanation

The value of M1, V1 and M2 is given to be 0.154M, 25.0mL and 1.00M respectively.

The balanced equation when NaOH reacts with HC2H3O2 is shown below.

NaOH+HC2H3O2H2O+C2H3O2Na

The above reaction indicates that one equivalent of NaOH is required to neutralize one equivalent of HC2H3O2.

The relationship between concentration and volume of NaOH and HC2H3O2 solutions is shown below.

M1V1=M2V2

Where,

• M1 is the molarity of HC2H3O2 solution
Interpretation Introduction

(b)

Interpretation:

The volume of 1.00M

NaOH required to neutralize the given solution is to be calculated.

35.0mL of 0.102M hydrofluoric acid

Concept Introduction:

The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.

The number of moles is calculated by the formula,

Moles=MassgMolarmass

The molarity is calculated by the formula,

Molarity=NumberofmolesofsoluteLitersofsolution.

Interpretation Introduction

(c)

Interpretation:

The volume of 1.00M

NaOH required to neutralize the given solution is to be calculated.

10.0mL of 0.143M phosphoric acid.

Concept Introduction:

The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.

The number of moles is calculated by the formula,

Moles=MassgMolarmass

The molarity is calculated by the formula,

Molarity=NumberofmolesofsoluteLitersofsolution.

Interpretation Introduction

(d)

Interpretation:

The volume of 1.00M

NaOH required to neutralize the given solution is to be calculated.

35.0mL of 0.220M sulfuric acid

Concept Introduction:

The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.

The number of moles is calculated by the formula,

Moles=MassgMolarmass

The molarity is calculated by the formula,

Molarity=NumberofmolesofsoluteLitersofsolution.

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

#### Find more solutions based on key concepts 