BuyFindarrow_forward

Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425

Solutions

Chapter
Section
BuyFindarrow_forward

Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425
Textbook Problem
1 views

. For each hydrogen or hydroxide ion concentration listed. calculate the concentration of the complementary ion and the pH and pOH of the solution.

a. [ H + ] = 5.72 × 10 4 M

b. [ OH - ] = 8.91 × 10 5 M c. [ H + ] = 2.87 × 10 12 M d. [ OH - ] = 7.22 × 10 8 M

Interpretation Introduction

(a)

Interpretation:

The concentration of complementary ion, pH and pOH of solution should be calculated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=logH+

Here, H+ is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=logOH

Here, OH is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Explanation

Given Information:

The hydrogen ion concentration is 5.72×104 M

Calculation:

The pH of solution can be calculated as follows:

pH=logH+

Putting the value,

pH=log5.72×104=3.24

Therefore, pH of solution is 3.24.

From pH, pOH can be calculated as follows:

pOH=14pH

Putting the value,

pOH=143

Interpretation Introduction

(b)

Interpretation:

The concentration of complementary ion, pH and pOH of solution should be calculated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=logH+

Here, H+ is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=logOH

Here, OH is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Interpretation Introduction

(c)

Interpretation:

The concentration of complementary ion, pH and pOH of solution should be calculated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=logH+

Here, H+ is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=logOH

Here, OH is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Interpretation Introduction

(d)

Interpretation:

The concentration of complementary ion, pH and pOH of solution should be calculated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=logH+

Here, H+ is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=logOH

Here, OH is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 16 Solutions

Show all chapter solutions add
Ch-16 P-2ALQCh-16 P-3ALQCh-16 P-4ALQCh-16 P-5ALQCh-16 P-6ALQCh-16 P-7ALQCh-16 P-8ALQCh-16 P-9ALQCh-16 P-10ALQCh-16 P-11ALQCh-16 P-12ALQCh-16 P-13ALQCh-16 P-14ALQCh-16 P-15ALQCh-16 P-16ALQCh-16 P-17ALQCh-16 P-1QAPCh-16 P-2QAPCh-16 P-3QAPCh-16 P-4QAPCh-16 P-5QAPCh-16 P-6QAPCh-16 P-7QAPCh-16 P-8QAPCh-16 P-9QAPCh-16 P-10QAPCh-16 P-11QAPCh-16 P-12QAPCh-16 P-13QAPCh-16 P-14QAPCh-16 P-15QAPCh-16 P-16QAPCh-16 P-17QAPCh-16 P-18QAPCh-16 P-19QAPCh-16 P-20QAPCh-16 P-21QAPCh-16 P-22QAPCh-16 P-23QAPCh-16 P-24QAPCh-16 P-25QAPCh-16 P-26QAPCh-16 P-27QAPCh-16 P-28QAPCh-16 P-29QAPCh-16 P-30QAPCh-16 P-31QAPCh-16 P-32QAPCh-16 P-33QAPCh-16 P-34QAPCh-16 P-35QAPCh-16 P-36QAPCh-16 P-37QAPCh-16 P-38QAPCh-16 P-39QAPCh-16 P-40QAPCh-16 P-41QAPCh-16 P-42QAPCh-16 P-43QAPCh-16 P-44QAPCh-16 P-45QAPCh-16 P-46QAPCh-16 P-47QAPCh-16 P-48QAPCh-16 P-49QAPCh-16 P-50QAPCh-16 P-51QAPCh-16 P-52QAPCh-16 P-53QAPCh-16 P-54QAPCh-16 P-55QAPCh-16 P-56QAPCh-16 P-57QAPCh-16 P-58QAPCh-16 P-59QAPCh-16 P-60QAPCh-16 P-61QAPCh-16 P-62QAPCh-16 P-63QAPCh-16 P-64QAPCh-16 P-65APCh-16 P-66APCh-16 P-67APCh-16 P-68APCh-16 P-69APCh-16 P-70APCh-16 P-71APCh-16 P-72APCh-16 P-73APCh-16 P-74APCh-16 P-75APCh-16 P-76APCh-16 P-77APCh-16 P-78APCh-16 P-79APCh-16 P-80APCh-16 P-81APCh-16 P-82APCh-16 P-83APCh-16 P-84APCh-16 P-85APCh-16 P-86APCh-16 P-87APCh-16 P-88APCh-16 P-89APCh-16 P-90APCh-16 P-91APCh-16 P-92APCh-16 P-93APCh-16 P-94APCh-16 P-95APCh-16 P-96APCh-16 P-97APCh-16 P-98APCh-16 P-99APCh-16 P-100APCh-16 P-101APCh-16 P-102APCh-16 P-103APCh-16 P-104APCh-16 P-105APCh-16 P-106CPCh-16 P-107CPCh-16 P-108CP

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

Which of the following increases the production of intestinal gas? chewing gum drinking carbonated beverages ea...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

What is meant by the phrase green chemistry?

Chemistry & Chemical Reactivity

Is there a connection between circadian rhythms and metabolism?

Introduction to General, Organic and Biochemistry

What is physically exchanged during crossing over?

Human Heredity: Principles and Issues (MindTap Course List)