Biochemistry
Biochemistry
6th Edition
ISBN: 9781305577206
Author: Reginald H. Garrett, Charles M. Grisham
Publisher: Cengage Learning
bartleby

Videos

Question
Chapter 16, Problem 11P
Interpretation Introduction

To determine:

The free energy of hydrolysis of ATP by the sarcoplasmic reticulum Ca-ATPase

Introduction:

The free energy change, ΔGfor non-standard-state concentration is:

  ΔG=ΔGo+RTln[Products][Reactants]

Where ΔGis change in Gibbs free energy, ΔGois change in Gibbs free energy at standard state, R is Gas constant, T is temperature, square brackets represents concentration.

Blurred answer
Knowledge Booster
Biochemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.
Similar questions
  • Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Graphical Analysis of MWC Allosteric Enzyme Kinetics (Integrates with Chapter 1.1) Draw both Line weaver-Burk plots and Hanes-Woolf plots for an MWC allosteric enzyme system, showing separate curves for the kinetic response in (a) the absence of any effectors, (b) the presence of allosteric activator Λ, and (c) the presence of allosteric inhibitor I.
    Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Quantitative Relationships Between Rate Constants to Calculate Km, Kinetic Efficiency (kcat/Km) and Vmax - I Measurement of the rate constants for a simple enzymatic reaction obeying Michaelis-Menten kinetics gave the following results: k1=2108M1sec1k1=1103sec1k2=5103sec1a. What is Ks, the dissociation constant for the enzyme-substrate complex? b. What is Km, the Michaelis constant for this enzyme? c. What is kcat (the turnover number) for this enzyme? d. What is the catalytic efficiency (kcat/Km) for this enzyme? e. Does this enzyme approach kinetic perfection? (That is, does kcat/Km approach the diffusion-controlled rate of enzyme association with substrate?) f. If a kinetic measurement was made using 2 nanomoles of enzyme per mL and saturating amounts of substrate, what would Vmax equal? g. Again, using 2 nanomoles of enzyme per mL of reaction mixture, what concentration of substrate would give v = 0.75 Vmax? h. If a kinetic measurement was made using 4 nanomoles of enzyme per mL and saturating amounts of substrate, what would Vmax equal? What would Km equal under these conditions?
    Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Quantitative Relationships Between Rale Constants to Calculate Km, Kinetic Efficiency (kcat/Km) and Vmax - II Triose phosphate isomerase catalyzes the conversion of glyceraldehyde-3-phosphate to dihydroxy-acetone phosphate. Glyceraldehyde3PdihydroxyacetonePThe Km of this enzyme tor its substrate glyceraldehyde-3-phosphate is 1.8 10-5 M. When [glyceraldehydes-3-phosphate] = 30 M, the rate of the reaction, v, was 82.5 mol mL-1 sec-1. a. What is Vmax for this enzyme? b. Assuming 3 nanomoles per mL of enzyme was used in this experiment ([Etotal]) = 3 nanomol/mL), what is kcat for this enzyme? c. What is the catalytic efficiency (kcat/Km) for triose phosphate isomerase? d. Does the value of kcat/Km reveal whether triose phosphate isomerase approaches catalytic perfection? e. What determines the ultimate speed limit of an enzyme-catalyzed reaction? That is, what is it that imposes the physical limit on kinetic perfection?
  • Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Quantitative Relationships Between Rate Constants to Calculate Km, Kinetic Efficiency (kcat/Km) and Vmax - VI The enzyme catalase catalyzes the decomposition of hydrogen peroxide: 2H2O22H2O+O2The turnover number (kcat) for catalase is 40,000,000 sec-1. The Km of catalase for its substrate H2O2 is 0.11 M. a. In an experiment using 3 nanomole/L of catalase, what is Vmax? b. What is v when [H2O2] = 0.75 M? c. What is the catalytic efficiency of catalase? d. Does catalase approach catalytic perfection?
    Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Graphical Analysis of Negative Gooperativity in KNF Allosteric Enzyme Kinetics The KNF model for allosteric transitions includes the possibility of negative cooperativity Draw Lineweaver-Burk and Hanes-Woolf plots for the case of negative cooperatively m substrate binding. (As a point of reference, include a line showing the classic Michaelis-Menten response of v to [S].)
    Answers to all problems are at the end οΓthis book. Detailed solutions are available in the Student Solutions Manual. Study Guide, and Problems Book. Comparison of Emzymatic and Nonenzymatic Rate Constants The for alkaline phosphatase—catalyzed hydrolysis of melhylphoiphate is approximately 14/sec at pH 8 and 25ºC. The rate constant for the uncatalyzed hydrolysis of methyl phosphate under the same conditions is approximately I0-15/sec. What is the difference in the free energies of activation of these two reactions?
  • Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Calculating C°' and from KeqCellular Concentrations Hexokinase catalyzes the phosphorylation of glucose from ATP. yielding glucose- 6-P and ADP. The standard-stale free energy change for hydrolysis of glucose-6-Ρ is — 13.9 kJ/mol. Calculate the standard-state free energy change and equilibrium constant for the hexokinase reaction.
    Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. The Dimensions of Mitochondria and Their Constituents Assume that mitochondria are cylinders 1.5 m in length and 0.6 m in diameter. (Section 1.5) What is the volume of a single mitochondrion? Oxaloacetate is an intermediate in the citric acid cycle, an important metabolic pathway localized in the mitochondria of eukaryotic cells. The concentration of oxaloacetate in mitochondria is about 0.03 . How many molecules of oxaloacetate are in a single mitochondrion?
    Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. The enzyme alcohol dehydrogenase catalyzes the oxidation of ethyl alcohol by NAD+ to give acetaldehyde plus NADH and a proton: CHjCH3OH + NAD+ > C’H3CHO + NADH + H+ The rate of this reaction can be measured by following the change in pH. The reaction is run in 1-mL 10 m TRIS buffer at pH 8.6. If the pH of the reaction solution falls to 8.4 after 10 minutes, what is the rate of alcohol oxidation, expressed as nanomoles of ethanol oxidized per mL per sec of reaction mixture?
  • Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Quantitative Relationships Between Rate Constants to Calculate Km, Kinetic Efficiency (kcat/Km) and Vmax - III The citric acid cycle enzyme fumarase catalyzes the conversion of fumarate to form malate. Fumarate+H2OmalateThe turnover number, kcat, for fumarase is 800/sec. The Km of fumarase for its substrate fumarate is 5M. a. In an experiment using 2 nanomole/mL of fumarase, what is Vmax? b. The cellular concentration of fumarate is 47.5 M. What is v when [fumarate] = 47.5 M? c. What is the catalytic efficiency of fumarase? d. Does fumarase approach catalytic perfection?
    Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Assessing the Formation and Composition of Limit Dextrins Prolonged exposure of amylopectin to starch phosphorylase yields a substance called a limit dextrin. Describe the chemical composition of limit dextrins. and draw a mechanism for the enzyme-catalyzed rcactioa that can begin the breakdown of a limit dextrin.
    Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Graphing the Results from Kinetics Experiments with Enzyme Inhibitors The following kinetic data were obtained for an enzyme in the absence of any inhibitor (1), and in the presence of two different inhibitors (2) and (3) at 5 mM concentration. Assume [ET] is the same in each experiment. Graph these data as Lineweaver-Burk plots and use your graph to find answers to a. and b. a. Determine Vmax and Km for the enzyme. b. Determine the type of inhibition and the K1 for each inhibitor.
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Biochemistry
    Biochemistry
    ISBN:9781305577206
    Author:Reginald H. Garrett, Charles M. Grisham
    Publisher:Cengage Learning
  • Biochemistry
    Biochemistry
    ISBN:9781305577206
    Author:Reginald H. Garrett, Charles M. Grisham
    Publisher:Cengage Learning
    Embryology | Fertilization, Cleavage, Blastulation; Author: Ninja Nerd;https://www.youtube.com/watch?v=8-KF0rnhKTU;License: Standard YouTube License, CC-BY