BuyFindarrow_forward

Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425

Solutions

Chapter
Section
BuyFindarrow_forward

Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425
Textbook Problem
6 views

. Calculate the [OH-] in each of the following solutions, and indicate whether the solution is acidic or basic.

a. [ H + ] = 1.02 × 10 7 M b. [ H + ] = 9.77 × 10 8 M

c. [ H + ] = 3.41 × 10 3 M d. [ H + ] = 4.79 × 10 11 M

Interpretation Introduction

(a)

Interpretation:

The concentration of hydroxide ion [OH] should be calculated. If the solution is acidic, neutral or basic should be indicated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=log[H+]

Here, [H+] is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=log[OH]

Here, [OH] is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the Ph value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Explanation

Given Information:

The concentration of hydrogen ion is 1.02×107 M

Calculation:

From the given hydrogen ion concentration, pH of solution can be calculated as follows:

pH=log[H+]

Putting the values,

pH=log(1.02×107)=6.99

From the pH, pOH of solution can be calculated as follows:

pOH=14pH

Putting the value,

pOH=146.99=7

Interpretation Introduction

(b)

Interpretation:

The concentration of hydroxide ion [OH] should be calculated. If the solution is acidic, neutral or basic should be indicated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=log[H+]

Here, [H+] is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=log[OH]

Here, [OH] is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the Ph value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Interpretation Introduction

(c)

Interpretation:

The concentration of hydroxide ion [OH] should be calculated. If the solution is acidic, neutral or basic should be indicated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=log[H+]

Here, [H+] is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=log[OH]

Here, [OH] is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the Ph value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Interpretation Introduction

(d)

Interpretation:

The concentration of hydroxide ion [OH] should be calculated. If the solution is acidic, neutral or basic should be indicated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=log[H+]

Here, [H+] is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=log[OH]

Here, [OH] is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the Ph value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 16 Solutions

Show all chapter solutions add
Ch-16 P-2ALQCh-16 P-3ALQCh-16 P-4ALQCh-16 P-5ALQCh-16 P-6ALQCh-16 P-7ALQCh-16 P-8ALQCh-16 P-9ALQCh-16 P-10ALQCh-16 P-11ALQCh-16 P-12ALQCh-16 P-13ALQCh-16 P-14ALQCh-16 P-15ALQCh-16 P-16ALQCh-16 P-17ALQCh-16 P-1QAPCh-16 P-2QAPCh-16 P-3QAPCh-16 P-4QAPCh-16 P-5QAPCh-16 P-6QAPCh-16 P-7QAPCh-16 P-8QAPCh-16 P-9QAPCh-16 P-10QAPCh-16 P-11QAPCh-16 P-12QAPCh-16 P-13QAPCh-16 P-14QAPCh-16 P-15QAPCh-16 P-16QAPCh-16 P-17QAPCh-16 P-18QAPCh-16 P-19QAPCh-16 P-20QAPCh-16 P-21QAPCh-16 P-22QAPCh-16 P-23QAPCh-16 P-24QAPCh-16 P-25QAPCh-16 P-26QAPCh-16 P-27QAPCh-16 P-28QAPCh-16 P-29QAPCh-16 P-30QAPCh-16 P-31QAPCh-16 P-32QAPCh-16 P-33QAPCh-16 P-34QAPCh-16 P-35QAPCh-16 P-36QAPCh-16 P-37QAPCh-16 P-38QAPCh-16 P-39QAPCh-16 P-40QAPCh-16 P-41QAPCh-16 P-42QAPCh-16 P-43QAPCh-16 P-44QAPCh-16 P-45QAPCh-16 P-46QAPCh-16 P-47QAPCh-16 P-48QAPCh-16 P-49QAPCh-16 P-50QAPCh-16 P-51QAPCh-16 P-52QAPCh-16 P-53QAPCh-16 P-54QAPCh-16 P-55QAPCh-16 P-56QAPCh-16 P-57QAPCh-16 P-58QAPCh-16 P-59QAPCh-16 P-60QAPCh-16 P-61QAPCh-16 P-62QAPCh-16 P-63QAPCh-16 P-64QAPCh-16 P-65APCh-16 P-66APCh-16 P-67APCh-16 P-68APCh-16 P-69APCh-16 P-70APCh-16 P-71APCh-16 P-72APCh-16 P-73APCh-16 P-74APCh-16 P-75APCh-16 P-76APCh-16 P-77APCh-16 P-78APCh-16 P-79APCh-16 P-80APCh-16 P-81APCh-16 P-82APCh-16 P-83APCh-16 P-84APCh-16 P-85APCh-16 P-86APCh-16 P-87APCh-16 P-88APCh-16 P-89APCh-16 P-90APCh-16 P-91APCh-16 P-92APCh-16 P-93APCh-16 P-94APCh-16 P-95APCh-16 P-96APCh-16 P-97APCh-16 P-98APCh-16 P-99APCh-16 P-100APCh-16 P-101APCh-16 P-102APCh-16 P-103APCh-16 P-104APCh-16 P-105APCh-16 P-106CPCh-16 P-107CPCh-16 P-108CP

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

B vitamins often act as: a. antioxidants. b. blood clotting factors. c. coenzymes. d. none of the above.

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

What is the difference between the Milky Way and the Milky Way Galaxy?

Horizons: Exploring the Universe (MindTap Course List)

What is the structure and function of the cytoskeleton?

Biology: The Dynamic Science (MindTap Course List)

Would you say the memory of the sediments is long or short (in geologic time)?

Oceanography: An Invitation To Marine Science, Loose-leaf Versin

A large man sits on a four-legged chair with his feet off the floor. The combined mass of the man and chair is ...

Physics for Scientists and Engineers, Technology Update (No access codes included)