Chemistry
Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 16, Problem 4KSP

Determine pH at the equivalence point in the titration of 26.0 mL 1.12 M pyridine with 0.93   M   H C l at 25°C .

(a) 7.00

(b) 2.76

(c) 11.24

(d) 1.73

(e) 12.27

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

The pH at the equivalence point in the titration of pyridine with hydrochloric acid is to be determined.

Concept introduction:

When a weak base is titrated against a strong acid, the conjugate acid of the weak base is formed in the reaction, as shown:

BOH(aq)+H+(aq)B+(aq)+H2O(l)

This conjugate acid now acts as a Bronsted acid and reacts with water to form weak base and hydronium ions according to the reaction:

B+(aq)+H2O(l)BOH(aq)+H+(aq)

Here, B+ is the ion that forms the weak base BOH. The pH equivalence of this solution is now determined by the [H+] ion.

The relationship between Kb, Ka, and Kw indicates the quantitative basis of the reciprocal relationship between the strength of an acid and its conjugate base, or vice-versa.

Ka×Kb=Kw …… (1)

Where, Ka is dissociation constant of acid, Kb is dissociation constant of base, and Kw is dissociation constant of water.

Ka is the measure of dissociation of an acid, known as acid-dissociation constant and is specific at particular temperatures.

Ka=[H+][BOH][B+] …… (2)

The formula to calculate the pH of the solution from the concentration of hydronium ions is expressed as

pH=log[H+] …… (3)

Molarity (M) is the concentration of any substance given by number of moles (n) of the substance divided by the volume of solution, (V) in liters.

M=nV

Rearrange this equation in terms of moles as shown

n=M×V

When volume is given in mL instead of liter, then millimoles are calculated as

mn=M×V(mL) …… (4)

Answer to Problem 4KSP

Correct answer: Option (b).

Explanation of Solution

Given information:

The concentration of pyridine (C5H5N) at 25°Cis 1.12 M and the volume is 26.0 mL. The concentration of HCl used in the titration is 0.93 M.

Reason for correct option:

From the given values of concentration and volume, calculate the number of millimoles of pyridineusing equation (4)

(nm)C5H5N=1.12molL×26.0 mL=29.12 mmol

Being a strong acid, HCl ionizes completely into H+ and Cl ions. The concentration of H+ is equal to the concentration of HCl. The H+ ions thus reacts with the weak base to produce its conjugate acid and water, according to the reaction shown given below:

C5H5N(aq)+H+(aq)C5H5NH+(aq)

At equivalence point, during the titration process, millimoles of weak base must be equal to the millimoles of the strong acid. Thus,

(nm)HCl=29.12 mmol

As the concentration of HCl is given, the volume of HCl used is calculated using equation (4):

(nm)HCl=(M)HCl×V(mL)V(mL)=(nm)HCl(M)HCl=29.12 mmol0.93molL=31.3 mL

Thus, the total volume of the solution containing C5H5N and HCl is 57.3 mL.

During titration, the weak base completelyneutralizes. Thus, the moles of weak base reacted is equal to the moles of its conjugate acid formed. Therefore,

(nm)C5H5NH+=29.12 mmol

Thus, the concentration of the conjugate acid (C5H5NH+) is calculated as

(M)C5H5NH+=(nm)C5H5NH+V(mL)=29.12 mmol57.3mL=0.51M

The anion C5H5NH+ comes from the weak base pyridine (C5H5N), thus the cation recombines with water to produce the base and hydronium ions according to the reaction:

C5H5NH+(aq)+H2O(l)C5H5N(aq)+H3O+(aq)

From table 16.7, Kb of pyridine is 1.7×109.

Ka of C5H5NH+, which is the conjugate acid of pyridine, is calculated using equation (1), also substitute the values of Kb and Kw as shown

(1.7×109)×Ka=1.0×1014Ka=1.0×10141.7×109Ka=5.9×106

Now, prepare an equilibrium table and represent each of the species in terms of x as

C5H5NH+(aq)H2O(aq)H3O+(aq)C5H5N(aq)Initial concentration(M)0.5100Change in concentration(M)x+x+xEquilibrium concentration(M)0.51xxx

Now, substitute these concentrations in equation (2)

Ka=(x)(x)(0.51x)

Since the value of Ka is very small, the amount of acid that recombines to form the base is less. Therefore, (0.51x) can be approximated as 0.51. Now, substitute the value of Ka in the equation above

5.9×106=(x)(x)(0.51)x2=3.0×106x=3.0×106x=1.7×103

Thus,

[C5H5N]=1.7×103 M[H3O+]=1.7×103 M

Now, substitute the value of [H3O+] in equation (3) as follows:

pH=log[1.7×103]=2.76

Therefore, the equivalence pH of the solution is 2.76. Thus, option (b) is correct.

Reason for incorrect options:

Since 7.00 is not obtained as the equivalence pH of the solution, option (a) is incorrect.

Since 11.24 is not obtained as the equivalence pH of the solution, option (c) is incorrect.

Since 1.73 is not obtained as the equivalence pH of the solution, option (d) is incorrect.

Since 12.27 is not obtained as the equivalence pH of the solution, option (e) is incorrect.

Therefore, options (a), (c), (d), and (e) are incorrect.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Acetominophen, HC8H8NO2 (MM=151.17 g/mol), is the active ingredient in Tylenol, a common pain reliever. A solution is made by dissolving 6.54g of acetaminophen in enough water to make 250.0 mL of solution. The resulting solution has a pH of 5.24. What is the Ka for acetaminophen?
The pH of 0.259 M solution of an unknown acid is measured to be 2.353. What is the Ka of the acid?
What is the pH of a solution of a freshwater solution at 25C containing 3mM DIC = H2CO3 + HCO3- + CO3^2?      ( Please type answer note write by hend )

Chapter 16 Solutions

Chemistry

Ch. 16.3 - Prob. 1PPACh. 16.3 - Practice Problem BUILD The value of at normal...Ch. 16.3 - Prob. 1PPCCh. 16.3 - Determine the pH of a solution at 25°C in which [...Ch. 16.3 - 16.3.2 Determine in a solution at...Ch. 16.3 - Determine the pOH of a solution at 25°C in which [...Ch. 16.3 - Determine [ OH − ] in a solution at 25°C if pH =...Ch. 16.4 - Practice ProblemATTEMPT Determine the pH of a...Ch. 16.4 - Practice Problem BUILD Determine the pH of a...Ch. 16.4 - Practice Problem CONCEPTUALIZE Strong acid is...Ch. 16.4 - Calculate the pH of a 0.075–-M solution of...Ch. 16.4 - 16.4.2 What is the concentration of in a solution...Ch. 16.4 - 16.4.3 What is the of a solution at that is...Ch. 16.4 - What is the concentration of KOH in a solution at...Ch. 16.4 - What is the pH of a solution at 25°C that is...Ch. 16.4 - What is the concentration of Ca ( OH ) 2 in a...Ch. 16.4 - Which diagram best represents a solution of...Ch. 16.5 - Practice Problem ATTEMPT Calculate the hydronium...Ch. 16.5 - Practice Problem BUILD Calculate the hydroxide ion...Ch. 16.5 - Practice Problem CONCEPTUALIZE What is the value...Ch. 16.5 - The K a of a weak acid is 5.5 × 10 − 4 . What is...Ch. 16.5 - A 0.042-M solution of a weak acid has pH 4.01 at...Ch. 16.5 - The diagrams show solutions of three different...Ch. 16.6 - Practice ProblemATTEMPT Determine the pOH of a...Ch. 16.6 - Practice Problem BUILD Determine the pH of a...Ch. 16.6 - Prob. 1PPCCh. 16.6 - What is the pH of a 0.63-M solution of weak base...Ch. 16.6 - A 0.12-M solution of a weak base has a pH of 10.76...Ch. 16.6 - The diagrams show solutions of three different...Ch. 16.7 - Practice Problem ATTEMPT Calculate the hydroxide...Ch. 16.7 - Practice ProblemBUILD Calculate the hydronium ion...Ch. 16.7 - Practice ProblemCONCEPTUALIZE What is the value of...Ch. 16.7 - 16.7.1 Calculate the of the cyanide ion . (See...Ch. 16.7 - Which of the anions listed is the strongest base?...Ch. 16.7 - The diagrams show solutions of three different...Ch. 16.8 - Practice Problem ATTEMPT Calculate the pH of an...Ch. 16.8 - Practice ProblemBUILD Calculate the pOH of an...Ch. 16.8 - Practice Problem CONCEPTUALIZE Estimate the pH of...Ch. 16.8 - Calculate the equilibrium concentration of CO 3 2...Ch. 16.8 - What is the pH of a 0.40-M solution of phosphoric...Ch. 16.8 - List the molecular and ionic species in order of...Ch. 16.8 - Which is true for any polyprotic acid? a) K a2 > K...Ch. 16.9 - Practice Problem ATTEMPT Calculate the...Ch. 16.9 - Practice Problem BUILD Calculate the concentration...Ch. 16.9 - Practice Problem CONCEPTUALIZE Which of the plots...Ch. 16.10 - Practice Problem ATTEMPT Calculate the pOH of the...Ch. 16.10 - Practice Problem BUILD Calculate the pH of the...Ch. 16.10 - Practice ProblemCONCEPTUALIZE Which of the...Ch. 16.10 - Calculate the pH of a 0.075-M solution of...Ch. 16.10 - Calculate the pH of a 0.082-M solution of...Ch. 16.10 - Prob. 3CPCh. 16.10 - Prob. 4CPCh. 16.10 - The diagrams represent solutions of three salts...Ch. 16.11 - Practice Problem ATTEMPT An aqueous solution of a...Ch. 16.11 - Practice Problem BUILD An aqueous solution of a...Ch. 16.11 - Practice ProblemCONCEPTUALIZE Which of the...Ch. 16.12 - Practice Problem ATTEMPT Calculate the pH at of a...Ch. 16.12 - Practice ProblemBUILD Calculate the pH at 25°C of...Ch. 16.12 - Practice Problem CONCEPTUALIZE The diagrams show...Ch. 16.12 - 16.12.1 Which of the following cannot act as a...Ch. 16.12 - Which of the following is a Lewis acid but not a...Ch. 16.13 - Practice Problem ATTEMPT Determine the pH and...Ch. 16.13 - Prob. 1PPBCh. 16.13 - Practice Problem CONCEPTUALIZE Which of the...Ch. 16.14 - Practice Problem ATTEMPT Calculate the of a weak...Ch. 16.14 - Practice Problem BUILD Calculate the of a weak...Ch. 16.14 - Practice Problem CONCEPTUALIZE Calculate K a...Ch. 16.15 - Practice Problem ATTEMPT Calculate the pH at of a...Ch. 16.15 - Practice ProblemBUILD Calculate the pH at 25°C of...Ch. 16.15 - Practice Problem CONCEPTUALIZE The diagrams...Ch. 16.16 - Practice ProblemATTEMPT Determine the K b of a...Ch. 16.16 - Practice Problem BUILD Determine the of a weak...Ch. 16.16 - Practice Problem CONCEPTUALIZE Determine the...Ch. 16.17 - Practice Problem ATTEMPT Determine (a) K b of the...Ch. 16.17 - Practice ProblemBUILD Determine (a) K b of the...Ch. 16.17 - Practice problemCONCEPTUALIZE Fee each week acid...Ch. 16.18 - Practice Problem ATTEMPT Calculate the...Ch. 16.18 - Practice Problem BUILD Calculate the...Ch. 16.18 - Practice ProblemCONCEPTURALIZE Which of the...Ch. 16.19 - Practice ProblemATTEMPT Indicate which is the...Ch. 16.19 - Practice Problem BUILD Based on the information in...Ch. 16.19 - Prob. 1PPCCh. 16.20 - Practice ProblemATTEMPT Determine the pH of a...Ch. 16.20 - Practice ProblemBUILD Determine the concentration...Ch. 16.20 - Practice ProblemCONCEPTUALIZE Which of the...Ch. 16.21 - Practice ProblemATTEMPT Determine the pH of a...Ch. 16.21 - Practice ProblemBUILD Determine the concentration...Ch. 16.21 - Practice Problem CONCEPTUALIZE Which of the...Ch. 16.22 - Practice Problem ATTEMPT Predict whether a 0.10-M...Ch. 16.22 - Prob. 1PPBCh. 16.22 - Prob. 1PPCCh. 16.23 - Practice ProblemATTEMPT Identify the Lewis acid...Ch. 16.23 - Practice Problem BUILD Write formulas for the...Ch. 16.23 - Practice Problem CONCEPTUALIZE Which of the...Ch. 16 - Calculate the pH of a solution that is 0.22 M in...Ch. 16 - 16.2 Determine pH at the equivalence point in the...Ch. 16 - Calculate the pH of a solution that is 0.22 M in...Ch. 16 - 16.4 Determine pH at the equivalence point in the...Ch. 16 - Define Brønsted acids and bases. Give an example...Ch. 16 - For a species to act as a Brønsted base, an atom...Ch. 16 - 16.3 Classify each of the following species as a...Ch. 16 - Identify the acid-base conjugate pairs in each of...Ch. 16 - 16.5 Write the formulas of the conjugate bases of...Ch. 16 - Write the formula for the conjugate acid of each...Ch. 16 - Which of the following could represent a Brønsted...Ch. 16 - 16.8 Oxalic acid has the following structure: An...Ch. 16 - Rite the equilibrium expression for the...Ch. 16 - 16.10 In Section 15.3 we learned that when we...Ch. 16 - 16.11 The equilibrium constant for the...Ch. 16 - 16.12 Define the term amphoteric. Ch. 16 - 16.13 Compare the magnitudes of in aqueous...Ch. 16 - Calculate the OH - concentration in an aqueous...Ch. 16 - 16.15 Calculate the concentration in an aqueous...Ch. 16 - The value of K w at 50°C is 5.48 × 10 − 14 ....Ch. 16 - The value of K w at 100°C is 5.1 × 3 10 − 13 ....Ch. 16 - Prob. 18QPCh. 16 - Prob. 19QPCh. 16 - Prob. 20QPCh. 16 - Prob. 21QPCh. 16 - Prob. 22QPCh. 16 - Calculate the concentration of OH- ions in a 1 .4...Ch. 16 - Prob. 24QPCh. 16 - 16.25 Calculate the pH of each of the following...Ch. 16 - Calculate the pH of each of the following...Ch. 16 - Prob. 27QPCh. 16 - Prob. 28QPCh. 16 - 16.29 The pOH of a solution is 9.40 at . Calculate...Ch. 16 - Prob. 30QPCh. 16 - Prob. 31QPCh. 16 - 16.32 A solution is made by dissolving 18.4 g of ...Ch. 16 - Prob. 33QPCh. 16 - Prob. 34QPCh. 16 - Prob. 35QPCh. 16 - Prob. 36QPCh. 16 - Prob. 37QPCh. 16 - Prob. 38QPCh. 16 - Prob. 39QPCh. 16 - 16.40 Calculate the concentration of in a...Ch. 16 - Calculate the concentration of HNO 3 in a solution...Ch. 16 - Prob. 42QPCh. 16 - Prob. 43QPCh. 16 - Prob. 44QPCh. 16 - Prob. 45QPCh. 16 - Explain what is meant by the strength of an acid.Ch. 16 - Prob. 47QPCh. 16 - Prob. 48QPCh. 16 - Why do we normally not quote K a values for strong...Ch. 16 - Which of the following solutions has the highest...Ch. 16 - Without referring to the text, write the formulas...Ch. 16 - In biological and medical applications, it is...Ch. 16 - 16.53 The for benzoic acid is Calculate the pH...Ch. 16 - The K a for hydrofluoric acid is 7.1 × 10 − 4 ....Ch. 16 - Calculate the pH of an aqueous solution at 25°C...Ch. 16 - Calculate the pH of an aqueous solution at 25°C...Ch. 16 - 16.57 Determine the percent ionization of the...Ch. 16 - Prob. 58QPCh. 16 - Prob. 59QPCh. 16 - Prob. 60QPCh. 16 - Calculate the K a of a weak acid if a 0.19 − M...Ch. 16 - Prob. 62QPCh. 16 - What is the original molarity of a solution of...Ch. 16 - What is the original molarity of a solution of a...Ch. 16 - 16.65 Which of the following statements are true...Ch. 16 - Prob. 66QPCh. 16 - Prob. 67QPCh. 16 - Compare the pH values for 0.10 − M solutions of...Ch. 16 - Which of the following has a higher pH: (a) 1 .0 M...Ch. 16 - Prob. 70QPCh. 16 - The pH of a 0.30-M solution of a weak base is...Ch. 16 - What is the original molarity of an aqueous...Ch. 16 - Prob. 73QPCh. 16 - Prob. 74QPCh. 16 - Prob. 75QPCh. 16 - Prob. 76QPCh. 16 - Prob. 77QPCh. 16 - Prob. 78QPCh. 16 - 16.79 Calculate for each of the following ions: ...Ch. 16 - Prob. 80QPCh. 16 - Prob. 81QPCh. 16 - Prob. 82QPCh. 16 - Prob. 83QPCh. 16 - Prob. 84QPCh. 16 - Compare the pH of a 0 .040 M HCl solution with...Ch. 16 - What are the concentrations of HSO 4, – SO 2– 4 ,...Ch. 16 - 16.87 Calculate the concentrations of Ch. 16 - Calculate the pH at 25°C of a 0.25 − M aqueous...Ch. 16 - 16.89 Calculate the pH at of a aqueous solution...Ch. 16 - The first and second ionization constants of a...Ch. 16 - Prob. 91QPCh. 16 - Prob. 92QPCh. 16 - Prob. 93QPCh. 16 - Prob. 94QPCh. 16 - Prob. 95QPCh. 16 - Prob. 96QPCh. 16 - Prob. 97QPCh. 16 - Define salt hydrolysis. Categorize salts according...Ch. 16 - 16.99 Explain why small, highly charged metal ions...Ch. 16 - Al 3+ is not a Brønsted acid, but Al( H 2 O ) 6 3+...Ch. 16 - Specify which of the following salts will undergo...Ch. 16 - Prob. 102QPCh. 16 - Calculate the pH of a 0 .42 M NH 4 Cl solution . (...Ch. 16 - Prob. 104QPCh. 16 - Prob. 105QPCh. 16 - Prob. 106QPCh. 16 - 16.107 Predict whether the following solutions are...Ch. 16 - A certain salt, MX (containing the M + and X -...Ch. 16 - Prob. 109QPCh. 16 - Predict whether a solution containing the salt K 2...Ch. 16 - Prob. 111QPCh. 16 - Prob. 112QPCh. 16 - Prob. 113QPCh. 16 - Prob. 114QPCh. 16 - Prob. 115QPCh. 16 - Prob. 116QPCh. 16 - Prob. 117QPCh. 16 - Prob. 118QPCh. 16 - Prob. 119QPCh. 16 - Prob. 120QPCh. 16 - Prob. 121QPCh. 16 - Prob. 122QPCh. 16 - Prob. 123QPCh. 16 - Prob. 124QPCh. 16 - Identity the Lewis acid and the Lewis base in the...Ch. 16 - Predict the direction that predominates in this...Ch. 16 - Prob. 127APCh. 16 - Prob. 128APCh. 16 - Calculate the pH and percent ionization of a 0 .88...Ch. 16 - 16.130 Calculate the pH of a 0.20 M ammonium...Ch. 16 - Prob. 131APCh. 16 - Prob. 132APCh. 16 - 16.133 Like water, liquid ammonia undergoes...Ch. 16 - Prob. 134APCh. 16 - A solution contains a weak monoprotic acid HA and...Ch. 16 - Prob. 136APCh. 16 - Prob. 137APCh. 16 - Prob. 138APCh. 16 - Prob. 139APCh. 16 - A 10.0-g sample of white phosphorus was burned in...Ch. 16 - Prob. 141APCh. 16 - Prob. 142APCh. 16 - Prob. 143APCh. 16 - Prob. 144APCh. 16 - 16.145 Give an example of (a) a weak acid that...Ch. 16 - Prob. 146APCh. 16 - Prob. 147APCh. 16 - Prob. 148APCh. 16 - When chlorine reacts with water, the resulting...Ch. 16 - Prob. 150APCh. 16 - Calculate the pH of a 2 .00 M NH 4 CN solution.Ch. 16 - Calculate the concentrations of all species in a 0...Ch. 16 - Prob. 153APCh. 16 - 16.154 Calculate the concentrations of all the...Ch. 16 - Prob. 155APCh. 16 - Calculate the pH of a solution that is 1.00 M HCN...Ch. 16 - How many grams of NaCN would you need to dissolve...Ch. 16 - A solution of formic acid ( HCOOH ) has a pH of...Ch. 16 - Calculate the pH of a 1-L solution containing...Ch. 16 - 16.160 A 1.87-g sample of Mg reacts with 80.0 mL...Ch. 16 - Prob. 161APCh. 16 - Prob. 162APCh. 16 - A 0.400 M formic acid ( HCOOH ) solution freezes...Ch. 16 - Prob. 164APCh. 16 - Prob. 165APCh. 16 - Prob. 166APCh. 16 - 16.167 Both the amide ion and the nitride ion ...Ch. 16 - Determine whether each of the following statements...Ch. 16 - Prob. 169APCh. 16 - Prob. 170APCh. 16 - Prob. 171APCh. 16 - 16.172 A typical reaction between an antacid and...Ch. 16 - Prob. 173APCh. 16 - 16.174 Hemoglobin is a blood protein that is...Ch. 16 - Tooth enamel is largely hydroxyapatite [ Ca 3 ( PO...Ch. 16 - Prob. 176APCh. 16 - Prob. 177APCh. 16 - About half of the hydrochloric acid produced...Ch. 16 - Prob. 179APCh. 16 - Prob. 180APCh. 16 - Prob. 181APCh. 16 - (a) Use VSEPR to predict the geometry of the...Ch. 16 - The following questions are not based on a...Ch. 16 - The following questions are not based on a...Ch. 16 - The following questions are not based on a...Ch. 16 - The following questions are not based on a...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY