BuyFindarrow_forward

Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550

Solutions

Chapter
Section
BuyFindarrow_forward

Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550
Textbook Problem

Evaluate the line integral.

7.C xy dx + y2 dy + yz dz, C is line segment from (1,0, −1), to (3,4, 2)

To determine

To Evaluate: The line integral Cxydx+y2dy+yzdz , C is the line segment from (1,0,1) , to (3,4,2) .

Explanation

Given data:

The line segment is given as follows.

(1,0,1) , to (3,4,2)

Formula used:

Write the expression vector representation of line segment.

r(t)=(1t)r0+tr1 0t1 (1)

Here,

r0 is starting point of line segment, and

r1 is ending point of line segment.

Write the expression to evaluate the line integral for a function f(x,y) along the curve C .

CP(x,y)dx+Q(x,y)dy=CP(x,y)dx+CQ(x,y)dy

CP(x,y)dx+Q(x,y)dy=[abP(x(t),y(t))x(t)dt+abQ(x(t),y(t))y(t)dt] (2)

Here,

a is the lower limit of the curve C and

b is the upper limit of the curve C.

Write the required differential and integration formulae to evaluate the given integral.

ddxxn=nxn1[f(x)]ndx=[f(x)]n+1n+1

Find parametric representation of line segment for x-coordinate using equation (1).

Substitute x for r(t) , 1 for r0 and 3 for r1 in equation (1),

x=(1t)(1)+t(3)=1t+3t=1+2t

Differentiate the equation with respect to t .

dxdt=0+2dx=2dt

Find parametric representation of line segment for y-coordinate using equation (1).

Substitute y for r(t) , 0 for r0 and 4 for r1 in equation (1),

y=(1t)(0)+t(4)=0+4t=4t

Differentiate the equation with respect to t .

dydt=4dy=4dt

Find parametric representation of line segment for z-coordinate using equation (1).

Substitute z for r(t) , 1 for r0 and 2 for r1 in equation (1),

z=(1t)(1)+t(2)=1+t+2t=1+3t

Differentiate the equation with respect to t

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 16 Solutions

Show all chapter solutions add
Sect-16.1 P-11ESect-16.1 P-12ESect-16.1 P-13ESect-16.1 P-14ESect-16.1 P-15ESect-16.1 P-16ESect-16.1 P-17ESect-16.1 P-18ESect-16.1 P-21ESect-16.1 P-22ESect-16.1 P-23ESect-16.1 P-24ESect-16.1 P-25ESect-16.1 P-26ESect-16.1 P-29ESect-16.1 P-30ESect-16.1 P-31ESect-16.1 P-32ESect-16.1 P-33ESect-16.1 P-34ESect-16.1 P-35ESect-16.1 P-36ESect-16.2 P-1ESect-16.2 P-2ESect-16.2 P-3ESect-16.2 P-4ESect-16.2 P-5ESect-16.2 P-6ESect-16.2 P-7ESect-16.2 P-8ESect-16.2 P-9ESect-16.2 P-10ESect-16.2 P-11ESect-16.2 P-12ESect-16.2 P-13ESect-16.2 P-14ESect-16.2 P-15ESect-16.2 P-16ESect-16.2 P-17ESect-16.2 P-18ESect-16.2 P-19ESect-16.2 P-20ESect-16.2 P-21ESect-16.2 P-22ESect-16.2 P-23ESect-16.2 P-24ESect-16.2 P-25ESect-16.2 P-26ESect-16.2 P-31ESect-16.2 P-32ESect-16.2 P-33ESect-16.2 P-34ESect-16.2 P-35ESect-16.2 P-36ESect-16.2 P-37ESect-16.2 P-38ESect-16.2 P-39ESect-16.2 P-40ESect-16.2 P-41ESect-16.2 P-42ESect-16.2 P-43ESect-16.2 P-44ESect-16.2 P-45ESect-16.2 P-46ESect-16.2 P-47ESect-16.2 P-48ESect-16.2 P-49ESect-16.2 P-50ESect-16.2 P-51ESect-16.2 P-52ESect-16.3 P-1ESect-16.3 P-2ESect-16.3 P-3ESect-16.3 P-4ESect-16.3 P-5ESect-16.3 P-6ESect-16.3 P-7ESect-16.3 P-8ESect-16.3 P-9ESect-16.3 P-10ESect-16.3 P-11ESect-16.3 P-12ESect-16.3 P-13ESect-16.3 P-14ESect-16.3 P-15ESect-16.3 P-16ESect-16.3 P-17ESect-16.3 P-18ESect-16.3 P-19ESect-16.3 P-20ESect-16.3 P-21ESect-16.3 P-22ESect-16.3 P-23ESect-16.3 P-24ESect-16.3 P-25ESect-16.3 P-26ESect-16.3 P-28ESect-16.3 P-29ESect-16.3 P-30ESect-16.3 P-31ESect-16.3 P-32ESect-16.3 P-33ESect-16.3 P-34ESect-16.3 P-35ESect-16.4 P-1ESect-16.4 P-2ESect-16.4 P-3ESect-16.4 P-4ESect-16.4 P-5ESect-16.4 P-6ESect-16.4 P-7ESect-16.4 P-8ESect-16.4 P-9ESect-16.4 P-10ESect-16.4 P-11ESect-16.4 P-12ESect-16.4 P-13ESect-16.4 P-14ESect-16.4 P-17ESect-16.4 P-18ESect-16.4 P-19ESect-16.4 P-20ESect-16.4 P-21ESect-16.4 P-22ESect-16.4 P-23ESect-16.4 P-24ESect-16.4 P-25ESect-16.4 P-26ESect-16.4 P-27ESect-16.4 P-28ESect-16.4 P-29ESect-16.4 P-30ESect-16.4 P-31ESect-16.5 P-1ESect-16.5 P-2ESect-16.5 P-3ESect-16.5 P-4ESect-16.5 P-5ESect-16.5 P-6ESect-16.5 P-7ESect-16.5 P-8ESect-16.5 P-9ESect-16.5 P-10ESect-16.5 P-11ESect-16.5 P-12ESect-16.5 P-13ESect-16.5 P-14ESect-16.5 P-15ESect-16.5 P-16ESect-16.5 P-17ESect-16.5 P-18ESect-16.5 P-19ESect-16.5 P-20ESect-16.5 P-21ESect-16.5 P-22ESect-16.5 P-23ESect-16.5 P-24ESect-16.5 P-25ESect-16.5 P-26ESect-16.5 P-27ESect-16.5 P-28ESect-16.5 P-29ESect-16.5 P-30ESect-16.5 P-31ESect-16.5 P-32ESect-16.5 P-33ESect-16.5 P-34ESect-16.5 P-35ESect-16.5 P-36ESect-16.5 P-37ESect-16.5 P-38ESect-16.5 P-39ESect-16.6 P-1ESect-16.6 P-2ESect-16.6 P-3ESect-16.6 P-4ESect-16.6 P-5ESect-16.6 P-6ESect-16.6 P-13ESect-16.6 P-14ESect-16.6 P-15ESect-16.6 P-16ESect-16.6 P-17ESect-16.6 P-18ESect-16.6 P-19ESect-16.6 P-20ESect-16.6 P-21ESect-16.6 P-22ESect-16.6 P-23ESect-16.6 P-24ESect-16.6 P-25ESect-16.6 P-26ESect-16.6 P-29ESect-16.6 P-30ESect-16.6 P-33ESect-16.6 P-34ESect-16.6 P-35ESect-16.6 P-36ESect-16.6 P-37ESect-16.6 P-38ESect-16.6 P-39ESect-16.6 P-40ESect-16.6 P-41ESect-16.6 P-42ESect-16.6 P-43ESect-16.6 P-44ESect-16.6 P-45ESect-16.6 P-46ESect-16.6 P-47ESect-16.6 P-48ESect-16.6 P-49ESect-16.6 P-50ESect-16.6 P-51ESect-16.6 P-52ESect-16.6 P-53ESect-16.6 P-54ESect-16.6 P-56ESect-16.6 P-59ESect-16.6 P-60ESect-16.6 P-61ESect-16.6 P-62ESect-16.6 P-63ESect-16.7 P-1ESect-16.7 P-2ESect-16.7 P-3ESect-16.7 P-4ESect-16.7 P-5ESect-16.7 P-6ESect-16.7 P-7ESect-16.7 P-8ESect-16.7 P-9ESect-16.7 P-10ESect-16.7 P-11ESect-16.7 P-12ESect-16.7 P-13ESect-16.7 P-14ESect-16.7 P-15ESect-16.7 P-16ESect-16.7 P-17ESect-16.7 P-18ESect-16.7 P-19ESect-16.7 P-20ESect-16.7 P-21ESect-16.7 P-22ESect-16.7 P-23ESect-16.7 P-24ESect-16.7 P-25ESect-16.7 P-26ESect-16.7 P-28ESect-16.7 P-37ESect-16.7 P-38ESect-16.7 P-39ESect-16.7 P-40ESect-16.7 P-41ESect-16.7 P-42ESect-16.7 P-43ESect-16.7 P-44ESect-16.7 P-45ESect-16.7 P-46ESect-16.7 P-47ESect-16.7 P-48ESect-16.7 P-49ESect-16.8 P-1ESect-16.8 P-2ESect-16.8 P-3ESect-16.8 P-4ESect-16.8 P-5ESect-16.8 P-6ESect-16.8 P-7ESect-16.8 P-8ESect-16.8 P-9ESect-16.8 P-10ESect-16.8 P-11ESect-16.8 P-12ESect-16.8 P-13ESect-16.8 P-14ESect-16.8 P-15ESect-16.8 P-17ESect-16.8 P-18ESect-16.8 P-19ESect-16.8 P-20ESect-16.9 P-1ESect-16.9 P-2ESect-16.9 P-3ESect-16.9 P-4ESect-16.9 P-5ESect-16.9 P-6ESect-16.9 P-7ESect-16.9 P-8ESect-16.9 P-9ESect-16.9 P-10ESect-16.9 P-11ESect-16.9 P-12ESect-16.9 P-13ESect-16.9 P-14ESect-16.9 P-17ESect-16.9 P-18ESect-16.9 P-19ESect-16.9 P-20ESect-16.9 P-23ESect-16.9 P-24ESect-16.9 P-25ESect-16.9 P-26ESect-16.9 P-27ESect-16.9 P-28ESect-16.9 P-29ESect-16.9 P-30ESect-16.9 P-31ESect-16.9 P-32ECh-16 P-1RCCCh-16 P-2RCCCh-16 P-3RCCCh-16 P-4RCCCh-16 P-5RCCCh-16 P-6RCCCh-16 P-7RCCCh-16 P-8RCCCh-16 P-9RCCCh-16 P-10RCCCh-16 P-11RCCCh-16 P-12RCCCh-16 P-13RCCCh-16 P-14RCCCh-16 P-15RCCCh-16 P-16RCCCh-16 P-1RQCh-16 P-2RQCh-16 P-3RQCh-16 P-4RQCh-16 P-5RQCh-16 P-6RQCh-16 P-7RQCh-16 P-8RQCh-16 P-9RQCh-16 P-10RQCh-16 P-11RQCh-16 P-12RQCh-16 P-13RQCh-16 P-1RECh-16 P-2RECh-16 P-3RECh-16 P-4RECh-16 P-5RECh-16 P-6RECh-16 P-7RECh-16 P-8RECh-16 P-9RECh-16 P-10RECh-16 P-11RECh-16 P-12RECh-16 P-13RECh-16 P-14RECh-16 P-15RECh-16 P-16RECh-16 P-17RECh-16 P-18RECh-16 P-19RECh-16 P-20RECh-16 P-21RECh-16 P-22RECh-16 P-23RECh-16 P-24RECh-16 P-25RECh-16 P-27RECh-16 P-28RECh-16 P-29RECh-16 P-30RECh-16 P-31RECh-16 P-32RECh-16 P-33RECh-16 P-34RECh-16 P-35RECh-16 P-36RECh-16 P-37RECh-16 P-38RECh-16 P-39RECh-16 P-40RECh-16 P-41RECh-16 P-1PCh-16 P-2PCh-16 P-3PCh-16 P-5PCh-16 P-6P

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 5-10, solve for y in terms of x. y(3)=4(2)113(x12)

Calculus: An Applied Approach (MindTap Course List)

In Exercises 1-8, find the indicated limit by first plotting the graph of the function in a suitable viewing wi...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Solve each equation: x225=2x534

Elementary Technical Mathematics

Find the area enclosed by the curve r2 = 9 cos 5.

Single Variable Calculus: Early Transcendentals

A definite integral for the length of the curve given by for 1 ≤ t ≤ 2 is:

Study Guide for Stewart's Multivariable Calculus, 8th

The critical numbers of f(x) = 3x4 = 20x3 36x2 are: a) 0, 1, 6 b) 0, 1, 6 c) 0, 1, 6 d) 0, 1, 6

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th