Foundations of Materials Science and Engineering
Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16.13, Problem 100AAP
To determine

The theoretical saturation magnetization for the ferrite NiOFe2O3.

The theoretical saturation induction for the ferrite NiOFe2O3.

Expert Solution & Answer
Check Mark

Answer to Problem 100AAP

The theoretical saturation magnetization for the ferrite NiOFe2O3 is 2.56×105A/m.

The theoretical saturation induction for the ferrite NiOFe2O3 is 0.32T.

Explanation of Solution

Write the expression to calculate saturation magnetization for the ferrite NiOFe2O3(Ms).

  Ms=(Atomic density)NμB                                                                                   (I)

Here, magnetic moment is N and Bohr magneton is μB.

Write the expression to calculate atomic density for the ferrite.

  Atomic density=nV=na3                                                                                             (II)

Here, number of atoms per unit cell is n, volume of the unit cell is V and lattice constant is a.

Write the expression to calculate saturation induction for the ferrite NiOFe2O3(Bs).

  Bsμ0Ms                                                                                                           (III)

Here, permeability constant is μ0.

Conclusion:

The ferrite NiOFe2O3 consists of eight molecules in its unit cell. The total magnetic moment of the unit cell will be 16Bohr magnetons because each molecule of Ni2+ corresponds to 2Bohr magnetons.

Consider that the number of atoms per unit cell for the ferrite NiOFe2O3 to be 1.

Substitute 1atoms/unit cell for n and 0.352nm for a in Equation (II).

 Atomic density=1atoms/unit cell(0.834nm)3=1atoms/unit cell(0.834nm×1×109m1nm)3=1.724×1027atoms/m3

The value of Bohr magneton (μB) is taken to be 9.27×1024Am2.

Substitute 1.724×1027atoms/m3 for Atomic density, 16Bohr magnetons/atom for N and 9.27×1024Am2 for μB in Equation (I).

 Ms=(1.724×1027atoms/m3)(16Bohr magnetons/atom)(9.27×1024Am2)=2.56×105A/m

Thus, the theoretical saturation magnetization for the ferrite NiOFe2O3 is 2.56×105A/m.

The value of permeability constant (μ0) is taken to be 4π×107Tm/A.

Substitute 4π×107Tm/A for μ0 and 2.56×105A/m for Ms in Equation (III).

 Bs=(4π×107Tm/A)(2.56×105A/m)=0.32T

Thus, the theoretical saturation induction for the ferrite NiOFe2O3 is 0.32T.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
DC and AC subject: Find the relative permeability of the typical ferromagnetic material whose magnetization curve is shown. H = 50, 100, 500 and 1000 A-turns/m.
2. Explain the magnetic classification of materials
a) Draw the hysteresis curves for a hard and a soft magnetic material. Label the axes and describe how you can get information about the saturation magnetisation, remanence and coercivity from the graphs. b) Which of the two materials would you use as a fridge magnet? Explain

Chapter 16 Solutions

Foundations of Materials Science and Engineering

Ch. 16.13 - Prob. 11KCPCh. 16.13 - Prob. 12KCPCh. 16.13 - Prob. 13KCPCh. 16.13 - Prob. 14KCPCh. 16.13 - Prob. 15KCPCh. 16.13 - Prob. 16KCPCh. 16.13 - Prob. 17KCPCh. 16.13 - Prob. 18KCPCh. 16.13 - Prob. 19KCPCh. 16.13 - Prob. 20KCPCh. 16.13 - Prob. 21KCPCh. 16.13 - Prob. 22KCPCh. 16.13 - Prob. 23KCPCh. 16.13 - Prob. 24KCPCh. 16.13 - Prob. 25KCPCh. 16.13 - Prob. 26KCPCh. 16.13 - Prob. 27KCPCh. 16.13 - Prob. 28KCPCh. 16.13 - Prob. 29KCPCh. 16.13 - Prob. 30KCPCh. 16.13 - Prob. 31KCPCh. 16.13 - Prob. 32KCPCh. 16.13 - Prob. 33KCPCh. 16.13 - Prob. 34KCPCh. 16.13 - Prob. 35KCPCh. 16.13 - What are eddy currents? How are they created in a...Ch. 16.13 - Prob. 37KCPCh. 16.13 - Prob. 38KCPCh. 16.13 - Prob. 39KCPCh. 16.13 - Prob. 40KCPCh. 16.13 - What compositions of NiFe alloys are especially...Ch. 16.13 - Prob. 42KCPCh. 16.13 - Prob. 43KCPCh. 16.13 - Prob. 44KCPCh. 16.13 - Prob. 45KCPCh. 16.13 - Prob. 46KCPCh. 16.13 - Prob. 47KCPCh. 16.13 - Prob. 48KCPCh. 16.13 - Prob. 49KCPCh. 16.13 - Prob. 50KCPCh. 16.13 - Prob. 51KCPCh. 16.13 - Prob. 52KCPCh. 16.13 - Prob. 53KCPCh. 16.13 - Prob. 54KCPCh. 16.13 - Prob. 55KCPCh. 16.13 - Prob. 56KCPCh. 16.13 - Prob. 57KCPCh. 16.13 - Prob. 58KCPCh. 16.13 - Prob. 59KCPCh. 16.13 - Prob. 60KCPCh. 16.13 - Prob. 61KCPCh. 16.13 - Prob. 62AAPCh. 16.13 - Prob. 63AAPCh. 16.13 - Prob. 64AAPCh. 16.13 - Prob. 65AAPCh. 16.13 - Prob. 66AAPCh. 16.13 - Gadolinium at very low temperatures has an average...Ch. 16.13 - Prob. 68AAPCh. 16.13 - Prob. 69AAPCh. 16.13 - Prob. 70AAPCh. 16.13 - Prob. 71AAPCh. 16.13 - Prob. 72AAPCh. 16.13 - Prob. 73AAPCh. 16.13 - Prob. 74AAPCh. 16.13 - Prob. 75AAPCh. 16.13 - Draw a hysteresis B-H loop for a ferromagnetic...Ch. 16.13 - Describe what happens to the magnetic induction...Ch. 16.13 - What happens to the magnetic domains of a...Ch. 16.13 - What are desirable magnetic properties for a soft...Ch. 16.13 - What are hysteresis energy losses? What factors...Ch. 16.13 - How does the AC frequency affect the hysteresis...Ch. 16.13 - How can eddy currents be reduced in metallic...Ch. 16.13 - Why does the addition of 3% to 4% silicon to iron...Ch. 16.13 - What disadvantages are there to the addition of...Ch. 16.13 - Why does a laminated structure increase the...Ch. 16.13 - Prob. 86AAPCh. 16.13 - Prob. 87AAPCh. 16.13 - Prob. 88AAPCh. 16.13 - Prob. 89AAPCh. 16.13 - Prob. 90AAPCh. 16.13 - Prob. 91AAPCh. 16.13 - Prob. 92AAPCh. 16.13 - Prob. 93AAPCh. 16.13 - Prob. 94AAPCh. 16.13 - Prob. 95AAPCh. 16.13 - Prob. 96AAPCh. 16.13 - Prob. 97AAPCh. 16.13 - Prob. 98AAPCh. 16.13 - Prob. 99AAPCh. 16.13 - Prob. 100AAPCh. 16.13 - Prob. 101AAPCh. 16.13 - Prob. 102AAPCh. 16.13 - Prob. 103SEPCh. 16.13 - Prob. 104SEPCh. 16.13 - Prob. 105SEPCh. 16.13 - Prob. 106SEP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Text book image
Electrical Transformers and Rotating Machines
Mechanical Engineering
ISBN:9781305494817
Author:Stephen L. Herman
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY