   Chapter 16.7, Problem 25E

Chapter
Section
Textbook Problem

Evaluate the surface integral ∫∫s F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation.25. F(x, y, z) = x i + y j + z2 k, S is the sphere with radius 1 and center the origin

To determine

To find: The value of SFdS for F(x,y,z)=xi+yj+z2k .

Explanation

Given data:

F(x,y,z)=xi+yj+z2k (1)

Formula used:

SFdS=DF(rϕ×rθ)dA (2)

rϕ=xϕi+yϕj+zϕk (3)

rθ=xθi+yθj+zθk (4)

By using the spherical coordinates to parameterize the sphere, consider r(ϕ,θ)=sinϕcosθi+sinϕsinθj+cosϕk with 0θ2π and 0ϕπ .

Find rϕ .

Substitute sinϕcosθ for x , sinϕsinθ for y and cosϕ for z in equation (2),

rϕ=ϕ(sinϕcosθ)i+ϕ(sinϕsinθ)j+ϕ(cosϕ)k=(cosθ)ϕ(sinϕ)i+(sinθ)ϕ(sinϕ)j+ϕ(cosϕ)k=cosθcosϕi+sinθcosϕjsinϕk

Find rθ .

Substitute sinϕcosθ for x , sinϕsinθ for y and cosϕ for z in equation (3),

rθ=θ(sinϕcosθ)i+θ(sinϕsinθ)j+θ(cosϕ)k=(sinϕ)θ(cosθ)i+(sinϕ)θ(sinθ)j+(cosϕ)θ(1)k=(sinϕ)(sinθ)i+(sinϕ)(cosθ)j+(cosϕ)(0)k=sinϕsinθi+sinϕcosθj

Find rϕ×rθ .

rϕ×rθ=(cosθcosϕi+sinθcosϕjsinϕk)×(sinϕsinθi+sinϕcosθj)=|ijkcosθcosϕsinθcosϕsinϕsinϕsinθsinϕcosθ0|={(0+sin2ϕcosθ)i+(sin2ϕsinθ+0)j+(cos2θcosϕsinϕ+sin2θcosϕsinϕ)k}={sin2ϕcosθi+sin2ϕsinθj+cosϕsinϕ(cos2θ+sin2θ)k}

rϕ×rθ={sin2ϕcosθi+sin2ϕsinθj+cosϕsinϕk} {cos2θ+sin2θ=1}

Find F[r(ϕ,θ)]

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Express the function in the form f g. 46. G(x)=x1+x3

Single Variable Calculus: Early Transcendentals, Volume I

Simplify the expressions in Exercises 97106. x1/2yx2y3/2

Finite Mathematics and Applied Calculus (MindTap Course List)

In Exercises 99106, factor out the greatest common factor from each expression. 101. 7a4 42a2b2 + 49a3b

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

If f(x)=n=0bn(x5)n for all x, write a formula for b8.

Single Variable Calculus: Early Transcendentals

True or False: If converges absolutely, then it converges conditionally.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th 