BuyFindarrow_forward

Elements Of Modern Algebra

8th Edition
Gilbert + 2 others
ISBN: 9781285463230

Solutions

Chapter
Section
BuyFindarrow_forward

Elements Of Modern Algebra

8th Edition
Gilbert + 2 others
ISBN: 9781285463230
Textbook Problem
1 views

a. Let R be the equivalence relation defined on Z in Example 2, and write out the elements of the equivalence class [ 3 ] .

b. Let R be the equivalence relation “congruence modulo 4” that is defined on Z in Example 4. For this R , list five members of equivalence class [ 7 ] .

(a)

To determine

The elements of the equivalence class [3] for the relation R.

Explanation

Given Information:

The relation R defined on set of all integers Z as xRy if and only if |x|=|y|.

Explanation:

Here, xRy|x|=|y|.

First of all, clearly |3|=|3| and |3|=3, so 3[3] and 3[3]. To prove that [3]={3,3}, we will prove that for every xZ, if x3 and x3, then x[3], or, more precisely, 3Rx.

Consider three cases;

Case I:

Let x>3. Then x is positive, so |x|=x, and |x|=x> 3=|3|, so |3|<|x|, which means that |3||x|. Finally, 3Rx follows from the definition of R

(b)

To determine

The elements of the equivalence class [7] for relation R.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-1.1 P-1ESect-1.1 P-2ESect-1.1 P-3ESect-1.1 P-4ESect-1.1 P-5ESect-1.1 P-6ESect-1.1 P-7ESect-1.1 P-8ESect-1.1 P-9ESect-1.1 P-10ESect-1.1 P-11ESect-1.1 P-12ESect-1.1 P-13ESect-1.1 P-14ESect-1.1 P-15ESect-1.1 P-16ESect-1.1 P-17ESect-1.1 P-18ESect-1.1 P-19ESect-1.1 P-20ESect-1.1 P-21ESect-1.1 P-22ESect-1.1 P-23ESect-1.1 P-24ESect-1.1 P-25ESect-1.1 P-26ESect-1.1 P-27ESect-1.1 P-28ESect-1.1 P-29ESect-1.1 P-30ESect-1.1 P-31ESect-1.1 P-32ESect-1.1 P-33ESect-1.1 P-34ESect-1.1 P-35ESect-1.1 P-36ESect-1.1 P-37ESect-1.1 P-38ESect-1.1 P-39ESect-1.1 P-40ESect-1.1 P-41ESect-1.1 P-42ESect-1.1 P-43ESect-1.2 P-1TFESect-1.2 P-2TFESect-1.2 P-3TFESect-1.2 P-4TFESect-1.2 P-5TFESect-1.2 P-6TFESect-1.2 P-7TFESect-1.2 P-8TFESect-1.2 P-9TFESect-1.2 P-1ESect-1.2 P-2ESect-1.2 P-3ESect-1.2 P-4ESect-1.2 P-5ESect-1.2 P-6ESect-1.2 P-7ESect-1.2 P-8ESect-1.2 P-9ESect-1.2 P-10ESect-1.2 P-11ESect-1.2 P-12ESect-1.2 P-13ESect-1.2 P-14ESect-1.2 P-15ESect-1.2 P-16ESect-1.2 P-17ESect-1.2 P-18ESect-1.2 P-19ESect-1.2 P-20ESect-1.2 P-21ESect-1.2 P-22ESect-1.2 P-23ESect-1.2 P-24ESect-1.2 P-25ESect-1.2 P-26ESect-1.2 P-27ESect-1.2 P-28ESect-1.3 P-1TFESect-1.3 P-2TFESect-1.3 P-3TFESect-1.3 P-4TFESect-1.3 P-5TFESect-1.3 P-6TFESect-1.3 P-1ESect-1.3 P-2ESect-1.3 P-3ESect-1.3 P-4ESect-1.3 P-5ESect-1.3 P-6ESect-1.3 P-7ESect-1.3 P-8ESect-1.3 P-9ESect-1.3 P-10ESect-1.3 P-11ESect-1.3 P-12ESect-1.4 P-1TFESect-1.4 P-2TFESect-1.4 P-3TFESect-1.4 P-4TFESect-1.4 P-5TFESect-1.4 P-6TFESect-1.4 P-7TFESect-1.4 P-8TFESect-1.4 P-9TFESect-1.4 P-1ESect-1.4 P-2ESect-1.4 P-3ESect-1.4 P-4ESect-1.4 P-5ESect-1.4 P-6ESect-1.4 P-7ESect-1.4 P-8ESect-1.4 P-9ESect-1.4 P-10ESect-1.4 P-11ESect-1.4 P-12ESect-1.4 P-13ESect-1.4 P-14ESect-1.4 P-15ESect-1.4 P-16ESect-1.5 P-1TFESect-1.5 P-2TFESect-1.5 P-3TFESect-1.5 P-1ESect-1.5 P-2ESect-1.5 P-3ESect-1.5 P-4ESect-1.5 P-5ESect-1.5 P-6ESect-1.5 P-7ESect-1.5 P-8ESect-1.5 P-9ESect-1.5 P-10ESect-1.6 P-1TFESect-1.6 P-2TFESect-1.6 P-3TFESect-1.6 P-4TFESect-1.6 P-5TFESect-1.6 P-6TFESect-1.6 P-7TFESect-1.6 P-8TFESect-1.6 P-9TFESect-1.6 P-10TFESect-1.6 P-11TFESect-1.6 P-12TFESect-1.6 P-1ESect-1.6 P-2ESect-1.6 P-3ESect-1.6 P-4ESect-1.6 P-5ESect-1.6 P-6ESect-1.6 P-7ESect-1.6 P-8ESect-1.6 P-9ESect-1.6 P-10ESect-1.6 P-11ESect-1.6 P-12ESect-1.6 P-13ESect-1.6 P-14ESect-1.6 P-15ESect-1.6 P-16ESect-1.6 P-17ESect-1.6 P-18ESect-1.6 P-19ESect-1.6 P-20ESect-1.6 P-21ESect-1.6 P-22ESect-1.6 P-23ESect-1.6 P-24ESect-1.6 P-25ESect-1.6 P-26ESect-1.6 P-27ESect-1.6 P-28ESect-1.6 P-29ESect-1.6 P-30ESect-1.6 P-31ESect-1.6 P-32ESect-1.7 P-1TFESect-1.7 P-2TFESect-1.7 P-3TFESect-1.7 P-4TFESect-1.7 P-5TFESect-1.7 P-6TFESect-1.7 P-1ESect-1.7 P-2ESect-1.7 P-3ESect-1.7 P-4ESect-1.7 P-5ESect-1.7 P-6ESect-1.7 P-7ESect-1.7 P-8ESect-1.7 P-9ESect-1.7 P-10ESect-1.7 P-11ESect-1.7 P-12ESect-1.7 P-13ESect-1.7 P-14ESect-1.7 P-15ESect-1.7 P-16ESect-1.7 P-17ESect-1.7 P-18ESect-1.7 P-19ESect-1.7 P-20ESect-1.7 P-21ESect-1.7 P-22ESect-1.7 P-23ESect-1.7 P-24ESect-1.7 P-25ESect-1.7 P-26ESect-1.7 P-27ESect-1.7 P-28ESect-1.7 P-29ESect-1.7 P-30E

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

From the graph of g, state the intervals on which g is continuous.

Single Variable Calculus: Early Transcendentals, Volume I

Divide: (60)(+12)

Elementary Technical Mathematics

In Exercises 1728, use the logarithm identities to obtain the missing quantity.

Finite Mathematics and Applied Calculus (MindTap Course List)

30. If a variable x is normally distributed, with and

Mathematical Applications for the Management, Life, and Social Sciences

In Exercises 11-16, find the slope of the line that passes through each pair of points. 16. (a + 1, b 1) and (...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Differentiate. y = sin cos

Single Variable Calculus: Early Transcendentals

What is the difference between x and ? Between s and

Introduction To Statistics And Data Analysis

Find the sum of the areas of approximating rectangles for the area under f (x) = 48 − x2, between x = 1 and x =...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Graph each function by using transformations. fx=2-x-3

College Algebra (MindTap Course List)