BuyFindarrow_forward

Elements Of Modern Algebra

8th Edition
Gilbert + 2 others
ISBN: 9781285463230

Solutions

Chapter
Section
BuyFindarrow_forward

Elements Of Modern Algebra

8th Edition
Gilbert + 2 others
ISBN: 9781285463230
Textbook Problem
57 views

Let R be the relation “congruence modulo 5” defined on Z as follows: x is congruent to y modulo 5 if and only if x y is a multiple of 5 , and we write x y ( mod 5 ) .

a. Prove that “congruence modulo 5

” is an equivalence relation.

b. List five members of each of the equivalence classes [ 0 ] , [ 1 ] , [ 2 ] , [ 8 ] , and [ 4 ] .

a)

To determine

To prove:

The relation “congruence modulo 5” defined on Z as x is congruent to y modulo 5 if and only if xy is a multiple of 5, written as xy(mod5) is an equivalence relation.

Explanation

Formula Used:

The relation “congruence modulo n” is defined on the set Z of all integers as follows:

x is congruent to y modulo n if and only if xy is a multiple of n. That is,

xy=nk for some kZ.

Proof:

A relation R on a nonempty set A is an equivalence relation if the following conditions are satisfied for arbitrary x, y, and z in A:

1. xRx for all xA. (Reflexive Property)

2. If xRy, then yRx. (Symmetric Property)

3. If xRy and yRz, then xRz. (Transitive Property)

Consider the relation xRy such that xy(mod5) if and only if xy is a multiple of 5 defined on Z.

1. xx(mod5), since xx=0=(5)(0).

2. xy(mod5)xy=5kforsomekZ

b)

To determine

The five members of each of the following equivalence classes [0],[1],[2],[8], and [4].

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-1.1 P-1ESect-1.1 P-2ESect-1.1 P-3ESect-1.1 P-4ESect-1.1 P-5ESect-1.1 P-6ESect-1.1 P-7ESect-1.1 P-8ESect-1.1 P-9ESect-1.1 P-10ESect-1.1 P-11ESect-1.1 P-12ESect-1.1 P-13ESect-1.1 P-14ESect-1.1 P-15ESect-1.1 P-16ESect-1.1 P-17ESect-1.1 P-18ESect-1.1 P-19ESect-1.1 P-20ESect-1.1 P-21ESect-1.1 P-22ESect-1.1 P-23ESect-1.1 P-24ESect-1.1 P-25ESect-1.1 P-26ESect-1.1 P-27ESect-1.1 P-28ESect-1.1 P-29ESect-1.1 P-30ESect-1.1 P-31ESect-1.1 P-32ESect-1.1 P-33ESect-1.1 P-34ESect-1.1 P-35ESect-1.1 P-36ESect-1.1 P-37ESect-1.1 P-38ESect-1.1 P-39ESect-1.1 P-40ESect-1.1 P-41ESect-1.1 P-42ESect-1.1 P-43ESect-1.2 P-1TFESect-1.2 P-2TFESect-1.2 P-3TFESect-1.2 P-4TFESect-1.2 P-5TFESect-1.2 P-6TFESect-1.2 P-7TFESect-1.2 P-8TFESect-1.2 P-9TFESect-1.2 P-1ESect-1.2 P-2ESect-1.2 P-3ESect-1.2 P-4ESect-1.2 P-5ESect-1.2 P-6ESect-1.2 P-7ESect-1.2 P-8ESect-1.2 P-9ESect-1.2 P-10ESect-1.2 P-11ESect-1.2 P-12ESect-1.2 P-13ESect-1.2 P-14ESect-1.2 P-15ESect-1.2 P-16ESect-1.2 P-17ESect-1.2 P-18ESect-1.2 P-19ESect-1.2 P-20ESect-1.2 P-21ESect-1.2 P-22ESect-1.2 P-23ESect-1.2 P-24ESect-1.2 P-25ESect-1.2 P-26ESect-1.2 P-27ESect-1.2 P-28ESect-1.3 P-1TFESect-1.3 P-2TFESect-1.3 P-3TFESect-1.3 P-4TFESect-1.3 P-5TFESect-1.3 P-6TFESect-1.3 P-1ESect-1.3 P-2ESect-1.3 P-3ESect-1.3 P-4ESect-1.3 P-5ESect-1.3 P-6ESect-1.3 P-7ESect-1.3 P-8ESect-1.3 P-9ESect-1.3 P-10ESect-1.3 P-11ESect-1.3 P-12ESect-1.4 P-1TFESect-1.4 P-2TFESect-1.4 P-3TFESect-1.4 P-4TFESect-1.4 P-5TFESect-1.4 P-6TFESect-1.4 P-7TFESect-1.4 P-8TFESect-1.4 P-9TFESect-1.4 P-1ESect-1.4 P-2ESect-1.4 P-3ESect-1.4 P-4ESect-1.4 P-5ESect-1.4 P-6ESect-1.4 P-7ESect-1.4 P-8ESect-1.4 P-9ESect-1.4 P-10ESect-1.4 P-11ESect-1.4 P-12ESect-1.4 P-13ESect-1.4 P-14ESect-1.4 P-15ESect-1.4 P-16ESect-1.5 P-1TFESect-1.5 P-2TFESect-1.5 P-3TFESect-1.5 P-1ESect-1.5 P-2ESect-1.5 P-3ESect-1.5 P-4ESect-1.5 P-5ESect-1.5 P-6ESect-1.5 P-7ESect-1.5 P-8ESect-1.5 P-9ESect-1.5 P-10ESect-1.6 P-1TFESect-1.6 P-2TFESect-1.6 P-3TFESect-1.6 P-4TFESect-1.6 P-5TFESect-1.6 P-6TFESect-1.6 P-7TFESect-1.6 P-8TFESect-1.6 P-9TFESect-1.6 P-10TFESect-1.6 P-11TFESect-1.6 P-12TFESect-1.6 P-1ESect-1.6 P-2ESect-1.6 P-3ESect-1.6 P-4ESect-1.6 P-5ESect-1.6 P-6ESect-1.6 P-7ESect-1.6 P-8ESect-1.6 P-9ESect-1.6 P-10ESect-1.6 P-11ESect-1.6 P-12ESect-1.6 P-13ESect-1.6 P-14ESect-1.6 P-15ESect-1.6 P-16ESect-1.6 P-17ESect-1.6 P-18ESect-1.6 P-19ESect-1.6 P-20ESect-1.6 P-21ESect-1.6 P-22ESect-1.6 P-23ESect-1.6 P-24ESect-1.6 P-25ESect-1.6 P-26ESect-1.6 P-27ESect-1.6 P-28ESect-1.6 P-29ESect-1.6 P-30ESect-1.6 P-31ESect-1.6 P-32ESect-1.7 P-1TFESect-1.7 P-2TFESect-1.7 P-3TFESect-1.7 P-4TFESect-1.7 P-5TFESect-1.7 P-6TFESect-1.7 P-1ESect-1.7 P-2ESect-1.7 P-3ESect-1.7 P-4ESect-1.7 P-5ESect-1.7 P-6ESect-1.7 P-7ESect-1.7 P-8ESect-1.7 P-9ESect-1.7 P-10ESect-1.7 P-11ESect-1.7 P-12ESect-1.7 P-13ESect-1.7 P-14ESect-1.7 P-15ESect-1.7 P-16ESect-1.7 P-17ESect-1.7 P-18ESect-1.7 P-19ESect-1.7 P-20ESect-1.7 P-21ESect-1.7 P-22ESect-1.7 P-23ESect-1.7 P-24ESect-1.7 P-25ESect-1.7 P-26ESect-1.7 P-27ESect-1.7 P-28ESect-1.7 P-29ESect-1.7 P-30E

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 4756, solve the given equation for the indicated variable. 81=3x

Finite Mathematics and Applied Calculus (MindTap Course List)

In Problems 15-40, use properties of limits and algebraic methods to find the limits, if they exist. 34.

Mathematical Applications for the Management, Life, and Social Sciences

In Exercises 18, determine whether the equation defines y as a linear function of x. If so, write it in the for...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Write each expression in terms of i. 64

Trigonometry (MindTap Course List)

Convert the following percents to decimals. 612

Contemporary Mathematics for Business & Consumers

For 0

Study Guide for Stewart's Multivariable Calculus, 8th

A mosquito population of 100 grows to 500 after two weeks. If the population follows an exponential growth mode...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th