
Concept explainers
Magnetite and hematite are iron ore minerals. On the basis of their chemical formulas, which mineral has a higher percentage of iron? (Magnetite is Fe2O3, hematite is Fe2O3.)

The mineral that contains higher percentage of iron from Magnetite and hematite.
Answer to Problem 8PEB
Solution:
Magnetite
Explanation of Solution
Given data:
Magnetite is
Hematite is
Formula used:
Write the mass percent of an element in a compound, which can be found from:
Explanation:
For Magnetite:
The formula for
The formula weight of Magnetite:
Recall the mass percent of an element in a compound, which can be found from:
Substitute
For Hematite:
The formula for:
The formula weight of Hematite:
Recall the mass percent of an element in a compound, which can be found from:
Substitute
Conclusion:
Magnetite has the higher percent of iron.
Want to see more full solutions like this?
Chapter 17 Solutions
Physical Science
Additional Science Textbook Solutions
Introductory Chemistry (6th Edition)
Campbell Biology (11th Edition)
Fundamentals Of Thermodynamics
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Organic Chemistry
Microbiology Fundamentals: A Clinical Approach
- Two cars are driving at 19 m/s along the road shown in the figure. Car B is at the bottom of a hill and car C is at the top. Both hills have a 263 m radius of curvature. Suppose both cars suddenly brake hard and start to skid. Part 1 B What is the tangential (parallel to the road) acceleration of car B? Assume μk = 0.850 and car B has velocity in the positive direction. a = Part 2 number (rtol=0.05, atol=1e-08) %|3 What is the tangential (parallel to the road) acceleration of car C? Assume μk=0.850 and car C has velocity in the positive direction. a = number (rtol=0.05, atol=1e-08) IIIarrow_forwardBlocks A and B each have a mass m = 10 kg. The coefficient of static friction between A and B is μg = 0.25. The angle shown is 0 = 31°. Neglect any friction between B and C. A 0 B P C Determine the largest horizontal force Ễ that can be applied so that A will not slip on B Ŕ = number (rtol=0.05, atol=1e-08) Narrow_forwardTwo cars are driving at 19 m/s along the road shown in the figure. Car B is at the bottom of a hill and car C is at the top. Both hills have a 263 m radius of curvature. Suppose both cars suddenly brake hard and start to skid. Part 1 B What is the tangential (parallel to the road) acceleration of car B? Assume μk = 0.850 and car B has velocity in the positive direction. a = Part 2 number (rtol=0.05, atol=1e-08) %|3 What is the tangential (parallel to the road) acceleration of car C? Assume μk=0.850 and car C has velocity in the positive direction. a = number (rtol=0.05, atol=1e-08) IIIarrow_forward
- Blocks A and B each have a mass m = 11 kg. The coefficient of static friction between A and B is μg = 0.38. The angle shown is 0 = 43°. Neglect any friction between B and C. A P 0 B Ꮎ C Determine the largest horizontal force P that can be applied so that A will not slip on B P = = number (rtol=0.05, atol=1e-08) N ?arrow_forwardAdress the Assignment 3, Calculate the speeds for raisin 2 & raisin 3. Show step by step solution please. Question is from a book named "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit.arrow_forwardAdress the Assignment 1 question, How far is a light-year? Show step by step solution please. Question is from a book named "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit.arrow_forward
- Adress the Assignment 2 question, Exactly how long? Show step by step solution please. Question is from a book named "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit.arrow_forwardAdress the Assignment 1 question, How far is a light-year? Show step by step solution please. Question is from a book named "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit.arrow_forwardQuestion 17 A ping pong ball, of mass 2.7 g and diameter 4.0 cm, is dropped from a 15-m high building. a. Estimate the ball's terminal velocity. b. At what speed would the ball hit the ground in the absence of air drag? Papa Yesterdayarrow_forward
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax

