BuyFindarrow_forward

Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550

Solutions

Chapter
Section
BuyFindarrow_forward

Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550
Textbook Problem

Graph the two basic solutions along with several other solutions of the differential equation. What features do the solutions have in common?

15. d 2 y d x 2 + 2 d y d x + 2 y = 0

To determine

To graph: The two basic solutions along with several other solutions of the differential equation for d2ydx2+2dydx+2y=0 .

Explanation

Formula used:

Write the expression for differential equation.

ay+by+cy=0 (1)

Write the expression for auxiliary equation.

ar2+br+c=0 (2)

Write the expression for the complex roots.

r=α±iβ (3)

Write the expression for general solution of ay+by+cy=0 with complex roots.

y=eαx(c1cosβx+c2sinβx) (4)

Here,

α is the real part of the root, and

β is the imaginary part of the root.

Consider the differential equation as follows.

d2ydx2+2dydx+2y=0 (5)

Compare equation (1) and (5).

a=1b=2c=2

Find the auxiliary equation.

Substitute 1 for a , 2 for b and 2 for c in equation (2),

(1)r2+(2)r+(2)=0r2+2r+2=0

Solve for r .

r=(2)±(2)24(1)(2)2(1)=(2)±482=2±42=2±2i2

Simplify r as follows.

r=1±i (6)

Compare equations (3) and (6).

α=1β=1

Substitute 1 for α and 1 for β in equation (4),

y=e(1)x(c1cos(1)x+c2sin(1)x)

y=ex(c1cosx+c2sinx) (7)

Here,

c1 and c2 are constant value.

Consider the value of c1 and c2 as 1 .

Substitute 1 for c1 and 1 for c2 in equation (7),

y=ex((1)cosx+(1)sinx)=ex(cosx+sinx)

y=excosx+exsinx (8)

Equation (8) consists two functions f(x) and g(x) as follows

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 17 Solutions

Show all chapter solutions add
Sect-17.1 P-11ESect-17.1 P-12ESect-17.1 P-13ESect-17.1 P-14ESect-17.1 P-15ESect-17.1 P-16ESect-17.1 P-17ESect-17.1 P-18ESect-17.1 P-19ESect-17.1 P-20ESect-17.1 P-21ESect-17.1 P-22ESect-17.1 P-23ESect-17.1 P-24ESect-17.1 P-25ESect-17.1 P-26ESect-17.1 P-27ESect-17.1 P-28ESect-17.1 P-29ESect-17.1 P-30ESect-17.1 P-31ESect-17.1 P-32ESect-17.1 P-33ESect-17.1 P-34ESect-17.2 P-1ESect-17.2 P-2ESect-17.2 P-3ESect-17.2 P-4ESect-17.2 P-5ESect-17.2 P-6ESect-17.2 P-7ESect-17.2 P-8ESect-17.2 P-9ESect-17.2 P-10ESect-17.2 P-11ESect-17.2 P-12ESect-17.2 P-13ESect-17.2 P-14ESect-17.2 P-15ESect-17.2 P-16ESect-17.2 P-17ESect-17.2 P-18ESect-17.2 P-19ESect-17.2 P-20ESect-17.2 P-21ESect-17.2 P-22ESect-17.2 P-23ESect-17.2 P-24ESect-17.2 P-25ESect-17.2 P-26ESect-17.2 P-27ESect-17.2 P-28ESect-17.3 P-1ESect-17.3 P-2ESect-17.3 P-3ESect-17.3 P-4ESect-17.3 P-5ESect-17.3 P-6ESect-17.3 P-7ESect-17.3 P-8ESect-17.3 P-9ESect-17.3 P-10ESect-17.3 P-11ESect-17.3 P-12ESect-17.3 P-13ESect-17.3 P-14ESect-17.3 P-15ESect-17.3 P-16ESect-17.3 P-17ESect-17.3 P-18ESect-17.4 P-1ESect-17.4 P-2ESect-17.4 P-3ESect-17.4 P-4ESect-17.4 P-5ESect-17.4 P-6ESect-17.4 P-7ESect-17.4 P-8ESect-17.4 P-9ESect-17.4 P-10ESect-17.4 P-11ESect-17.4 P-12ECh-17 P-1RCCCh-17 P-2RCCCh-17 P-3RCCCh-17 P-4RCCCh-17 P-5RCCCh-17 P-1RQCh-17 P-2RQCh-17 P-3RQCh-17 P-4RQCh-17 P-1RECh-17 P-2RECh-17 P-3RECh-17 P-4RECh-17 P-5RECh-17 P-6RECh-17 P-7RECh-17 P-8RECh-17 P-9RECh-17 P-10RECh-17 P-11RECh-17 P-12RECh-17 P-13RECh-17 P-14RECh-17 P-15RECh-17 P-16RECh-17 P-17RECh-17 P-18RECh-17 P-19RECh-17 P-20RECh-17 P-21RE

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Evaluate the indefinite integral. xx2+4dx

Single Variable Calculus: Early Transcendentals, Volume I

Expand each expression in Exercises 122. (2x3)2

Finite Mathematics and Applied Calculus (MindTap Course List)

In Exercises 19-21, use implicit differentiation to find dy/dx. 4x23y2+x3y=5

Calculus: An Applied Approach (MindTap Course List)

In Exercises 63-68, use the graph of the function f to determine limxf(x) and limxf(x) 63.

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Change 24 ft to yards.

Elementary Technical Mathematics

In Problems 15-28, find the general solution to the given differential equation.

Mathematical Applications for the Management, Life, and Social Sciences

Convert from degrees to radians. 6. 36

Single Variable Calculus: Early Transcendentals

The length of a = 4i – j – 2k is: 11 21

Study Guide for Stewart's Multivariable Calculus, 8th

The graph of x = 2 + 3t, y = 4 − t is a: circle ellipse line parabola

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th