BuyFindarrow_forward

Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550

Solutions

Chapter
Section
BuyFindarrow_forward

Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550
Textbook Problem

Solve the boundary-value problem, if possible.

25. y" + 16y = 0, y(0) = –3, y(π/8) = 2

To determine

To solve: The boundary-value problem for differential equation y+16y=0 , y(0)=3 , y(π8)=2 .

Explanation

Formula used:

Write the expression for differential equation.

ay+by+cy=0 (1)

Write the expression for auxiliary equation.

ar2+br+c=0 (2)

Write the expression for the complex roots.

r=α±iβ (3)

Write the expression for general solution of ay+by+cy=0 with complex roots.

y=eαx(c1cosβx+c2sinβx) (4)

Here,

α is the real part of the root, and

β is the imaginary part of the root.

Write the required differential formulae to evaluate the differential equation.

ddxcosx=sinxddxsinx=cosx

Consider the differential equation as follows.

y+16y=0 (5)

Compare equation (1) and (5).

a=1b=0c=16

Find the auxiliary equation.

Substitute 1 for a , 0 for b and 16 for c in equation (2),

(1)r2+(0)r+(16)=0r2+16=0r2=16

Simplify equation as follows.

r=±i4 (6)

Compare equation (3) and (6).

α=0β=4

Find the general solution of y+16y=0 using equation (4).

Substitute 0 for α and 4 for β in equation (4),

y=e(0)x(c1cos4x+c2sin4x)

y=c1cos4x+c2sin4x (7)

Modify equation (7) as follows

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 17 Solutions

Show all chapter solutions add
Sect-17.1 P-11ESect-17.1 P-12ESect-17.1 P-13ESect-17.1 P-14ESect-17.1 P-15ESect-17.1 P-16ESect-17.1 P-17ESect-17.1 P-18ESect-17.1 P-19ESect-17.1 P-20ESect-17.1 P-21ESect-17.1 P-22ESect-17.1 P-23ESect-17.1 P-24ESect-17.1 P-25ESect-17.1 P-26ESect-17.1 P-27ESect-17.1 P-28ESect-17.1 P-29ESect-17.1 P-30ESect-17.1 P-31ESect-17.1 P-32ESect-17.1 P-33ESect-17.1 P-34ESect-17.2 P-1ESect-17.2 P-2ESect-17.2 P-3ESect-17.2 P-4ESect-17.2 P-5ESect-17.2 P-6ESect-17.2 P-7ESect-17.2 P-8ESect-17.2 P-9ESect-17.2 P-10ESect-17.2 P-11ESect-17.2 P-12ESect-17.2 P-13ESect-17.2 P-14ESect-17.2 P-15ESect-17.2 P-16ESect-17.2 P-17ESect-17.2 P-18ESect-17.2 P-19ESect-17.2 P-20ESect-17.2 P-21ESect-17.2 P-22ESect-17.2 P-23ESect-17.2 P-24ESect-17.2 P-25ESect-17.2 P-26ESect-17.2 P-27ESect-17.2 P-28ESect-17.3 P-1ESect-17.3 P-2ESect-17.3 P-3ESect-17.3 P-4ESect-17.3 P-5ESect-17.3 P-6ESect-17.3 P-7ESect-17.3 P-8ESect-17.3 P-9ESect-17.3 P-10ESect-17.3 P-11ESect-17.3 P-12ESect-17.3 P-13ESect-17.3 P-14ESect-17.3 P-15ESect-17.3 P-16ESect-17.3 P-17ESect-17.3 P-18ESect-17.4 P-1ESect-17.4 P-2ESect-17.4 P-3ESect-17.4 P-4ESect-17.4 P-5ESect-17.4 P-6ESect-17.4 P-7ESect-17.4 P-8ESect-17.4 P-9ESect-17.4 P-10ESect-17.4 P-11ESect-17.4 P-12ECh-17 P-1RCCCh-17 P-2RCCCh-17 P-3RCCCh-17 P-4RCCCh-17 P-5RCCCh-17 P-1RQCh-17 P-2RQCh-17 P-3RQCh-17 P-4RQCh-17 P-1RECh-17 P-2RECh-17 P-3RECh-17 P-4RECh-17 P-5RECh-17 P-6RECh-17 P-7RECh-17 P-8RECh-17 P-9RECh-17 P-10RECh-17 P-11RECh-17 P-12RECh-17 P-13RECh-17 P-14RECh-17 P-15RECh-17 P-16RECh-17 P-17RECh-17 P-18RECh-17 P-19RECh-17 P-20RECh-17 P-21RE

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Celsius and Fahrenheit Temperatures The relationship between Celsius (C) and Fahrenheit (F) temperatures is giv...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Compute P7,7.

Understanding Basic Statistics

20. Find the slope of the tangent in the positive y-direction to the surface at (2, 1, -2).

Mathematical Applications for the Management, Life, and Social Sciences

Simplify each power of i. i22

Trigonometry (MindTap Course List)

The distance a ship is from a lighthouse after t hours is given in the table. What is the average velocity betw...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

The slope of the tangent line to r = cos θ at is:

Study Guide for Stewart's Multivariable Calculus, 8th