BuyFindarrow_forward

Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550

Solutions

Chapter
Section
BuyFindarrow_forward

Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550
Textbook Problem

Solve the differential equation using the method of variation of parameters.

25. y 3 y + 2 y = 1 1 + e x

To determine

To solve: The differential equation by using method of variation of parameters.

Explanation

Given data:

The differential equation is,

y3y+2y=11+ex (1)

Consider the auxiliary equation is,

r23r+2=0 (2)

Roots of equation (2) are,

r=(3)±(3)24(1)(2)2(1){r=b±b24ac2afortheequationofar2+br+c=0}=3±12=1and2

Write the expression for the complementary solution of two real roots.

yc(x)=c1er1x+c2er2x (3)

Substitute 1 for r1 and 2 for r2 in equation (3),

yc(x)=c1e1x+c2e2x

yc(x)=c1ex+c2e2x (4)

From equation (4), set y1=ex and y2=e2x .

Calculate y1y2y2y1 .

y1y2y2y1=exd(e2x)dxe2xd(ex)dx=ex(2)(e2x)(e2x)(ex)(1)=2e3xe3x=e3x

Write the expression to find the arbitrary function u1 ,

u1=G(x)y2y1y2y2y1

Here,

G(x) is the expression for R.H.S of differential equation in (1),

Substitute 11+ex for G(x) , e2x for y2 , and e3x for y1y2y2y1 ,

u1=11+ex(e2x)e3x=ex1+ex

Integrate on both sides of the equation.

u1=ex1+exdxu1(x)=ln(1+ex)

Write the expression to find the arbitrary function u2 ,

u2=G(x)y1y1y2y2y1

Here,

G(x) is the expression for R

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 17 Solutions

Show all chapter solutions add
Sect-17.1 P-11ESect-17.1 P-12ESect-17.1 P-13ESect-17.1 P-14ESect-17.1 P-15ESect-17.1 P-16ESect-17.1 P-17ESect-17.1 P-18ESect-17.1 P-19ESect-17.1 P-20ESect-17.1 P-21ESect-17.1 P-22ESect-17.1 P-23ESect-17.1 P-24ESect-17.1 P-25ESect-17.1 P-26ESect-17.1 P-27ESect-17.1 P-28ESect-17.1 P-29ESect-17.1 P-30ESect-17.1 P-31ESect-17.1 P-32ESect-17.1 P-33ESect-17.1 P-34ESect-17.2 P-1ESect-17.2 P-2ESect-17.2 P-3ESect-17.2 P-4ESect-17.2 P-5ESect-17.2 P-6ESect-17.2 P-7ESect-17.2 P-8ESect-17.2 P-9ESect-17.2 P-10ESect-17.2 P-11ESect-17.2 P-12ESect-17.2 P-13ESect-17.2 P-14ESect-17.2 P-15ESect-17.2 P-16ESect-17.2 P-17ESect-17.2 P-18ESect-17.2 P-19ESect-17.2 P-20ESect-17.2 P-21ESect-17.2 P-22ESect-17.2 P-23ESect-17.2 P-24ESect-17.2 P-25ESect-17.2 P-26ESect-17.2 P-27ESect-17.2 P-28ESect-17.3 P-1ESect-17.3 P-2ESect-17.3 P-3ESect-17.3 P-4ESect-17.3 P-5ESect-17.3 P-6ESect-17.3 P-7ESect-17.3 P-8ESect-17.3 P-9ESect-17.3 P-10ESect-17.3 P-11ESect-17.3 P-12ESect-17.3 P-13ESect-17.3 P-14ESect-17.3 P-15ESect-17.3 P-16ESect-17.3 P-17ESect-17.3 P-18ESect-17.4 P-1ESect-17.4 P-2ESect-17.4 P-3ESect-17.4 P-4ESect-17.4 P-5ESect-17.4 P-6ESect-17.4 P-7ESect-17.4 P-8ESect-17.4 P-9ESect-17.4 P-10ESect-17.4 P-11ESect-17.4 P-12ECh-17 P-1RCCCh-17 P-2RCCCh-17 P-3RCCCh-17 P-4RCCCh-17 P-5RCCCh-17 P-1RQCh-17 P-2RQCh-17 P-3RQCh-17 P-4RQCh-17 P-1RECh-17 P-2RECh-17 P-3RECh-17 P-4RECh-17 P-5RECh-17 P-6RECh-17 P-7RECh-17 P-8RECh-17 P-9RECh-17 P-10RECh-17 P-11RECh-17 P-12RECh-17 P-13RECh-17 P-14RECh-17 P-15RECh-17 P-16RECh-17 P-17RECh-17 P-18RECh-17 P-19RECh-17 P-20RECh-17 P-21RE

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Fill in the blanks. 2. a. The point P(a, 0) lies on the _____ -axis, and the point P(0, b) lies on the ______ -...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Prove each identity. cos(2+)=sin

Trigonometry (MindTap Course List)

, where E is the wedge-shaped solid shown at the right, equals:

Study Guide for Stewart's Multivariable Calculus, 8th

Sometimes, Always, or Never: If limxaf(x) and f(a) both exist, then f is continuous at a.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th