Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550



Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550
Textbook Problem

The battery in Exercise 14 is replaced by a generator producing a voltage of E(t) = 12 sin 10t.

(a) Find the charge at time t.

(b) Graph the charge function.


To determine

To find : The charge of series RLC circuit at time t .


Given data:

Series RLC circuit with following values.

R=24Ω , L=2H , C=0.005F , E(t)=12sin10tV , Q(0)=0.001 and Q(0)=I(0)=0 .

Formula used:

Write the expression for differential equation of electric circuit.


LQ+RQ+1CQ=E(t) (1)

Write the expression for general solution with complex roots.

Q(t)=eαt[c1cos(βt)+c2sin(βt)] (2)

Write the expression for r .

r=α+βi (3)

Write the expression for auxiliary equation.

ar2+br+c=0 (4)

Write the expression for differential equation.

ay+by+cy=0 (5)

Find the differential equation for electric circuit using equation (1).

Substitute 2 for L, 24 for R, 0.005 for C and 12sin10t for E(t) in equation (1),


2Q+24Q+200Q=12sin10t (6)

Modify equation (5) as follows.

aQ+bQ+cQ=0 (7)

Compare equation (6) and (7).


Substitute 2 for a, 24 for b and 200 for c in equation (4),


Find the value of r .


Simplify r as follows.

r=6±8i (8)

Compare equations (3) and (8).


Substitute 6 for α and 8 for β in equation (2),

Q(t)=e6t[c1cos(8t)+c2sin(8t)] (9)

Modify equation (9) for complementary equation as follows.


Consider the value of Qp(t) as follows.

Qp(t)=Acos10t+Bsin10t (10)

Differentiate equation (10) with respect to t .


Differentiate equation with respect to t .


Modify equation (6) as follows.


Substitute 100Acos10t100Bsin10t for Qp(t) , 10Asin10t+10Bcos10t for Qp(t) and Acos10t+Bsin10t for Qp(t) ,


Compare left hand side (LHS) and right hand side (RHS) of equation


To determine

To graph: The charge functions.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 17 Solutions

Show all chapter solutions add
Sect-17.1 P-11ESect-17.1 P-12ESect-17.1 P-13ESect-17.1 P-14ESect-17.1 P-15ESect-17.1 P-16ESect-17.1 P-17ESect-17.1 P-18ESect-17.1 P-19ESect-17.1 P-20ESect-17.1 P-21ESect-17.1 P-22ESect-17.1 P-23ESect-17.1 P-24ESect-17.1 P-25ESect-17.1 P-26ESect-17.1 P-27ESect-17.1 P-28ESect-17.1 P-29ESect-17.1 P-30ESect-17.1 P-31ESect-17.1 P-32ESect-17.1 P-33ESect-17.1 P-34ESect-17.2 P-1ESect-17.2 P-2ESect-17.2 P-3ESect-17.2 P-4ESect-17.2 P-5ESect-17.2 P-6ESect-17.2 P-7ESect-17.2 P-8ESect-17.2 P-9ESect-17.2 P-10ESect-17.2 P-11ESect-17.2 P-12ESect-17.2 P-13ESect-17.2 P-14ESect-17.2 P-15ESect-17.2 P-16ESect-17.2 P-17ESect-17.2 P-18ESect-17.2 P-19ESect-17.2 P-20ESect-17.2 P-21ESect-17.2 P-22ESect-17.2 P-23ESect-17.2 P-24ESect-17.2 P-25ESect-17.2 P-26ESect-17.2 P-27ESect-17.2 P-28ESect-17.3 P-1ESect-17.3 P-2ESect-17.3 P-3ESect-17.3 P-4ESect-17.3 P-5ESect-17.3 P-6ESect-17.3 P-7ESect-17.3 P-8ESect-17.3 P-9ESect-17.3 P-10ESect-17.3 P-11ESect-17.3 P-12ESect-17.3 P-13ESect-17.3 P-14ESect-17.3 P-15ESect-17.3 P-16ESect-17.3 P-17ESect-17.3 P-18ESect-17.4 P-1ESect-17.4 P-2ESect-17.4 P-3ESect-17.4 P-4ESect-17.4 P-5ESect-17.4 P-6ESect-17.4 P-7ESect-17.4 P-8ESect-17.4 P-9ESect-17.4 P-10ESect-17.4 P-11ESect-17.4 P-12ECh-17 P-1RCCCh-17 P-2RCCCh-17 P-3RCCCh-17 P-4RCCCh-17 P-5RCCCh-17 P-1RQCh-17 P-2RQCh-17 P-3RQCh-17 P-4RQCh-17 P-1RECh-17 P-2RECh-17 P-3RECh-17 P-4RECh-17 P-5RECh-17 P-6RECh-17 P-7RECh-17 P-8RECh-17 P-9RECh-17 P-10RECh-17 P-11RECh-17 P-12RECh-17 P-13RECh-17 P-14RECh-17 P-15RECh-17 P-16RECh-17 P-17RECh-17 P-18RECh-17 P-19RECh-17 P-20RECh-17 P-21RE

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Proof Prove that if f has an inverse function, then (f1)1=f

Calculus: Early Transcendental Functions

Expand each expression in Exercises 122. (4y2)y

Finite Mathematics and Applied Calculus (MindTap Course List)

In Exercises 16, find the points of intersection of the graphs of the functions. Express your answer accurate t...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

An integral for the surface area obtained by rotating y = sin x + cos x, , about the x-axis is:

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th