
Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18, Problem 108P
A 1700 kg Buick moving at 83 km/h brakes to a step, at uniform deceleration and without skidding, over a distance of 93 m. At what average rate is mechanical energy transferred to thermal energy in the brake system?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Box 100kg
static friction 0.5
kinetic friction 0.3
gravity 9.81
Task 2: Coulomb's law and electric fields
1. In this unit, you were learning about different yet similar laws of physics -
Newton's universal law of gravitation and Coulomb's law of electrostatics.
Describe one similarity and one difference for these two laws.
2. Refer to the following two images for the questions that follow.
Figure 1
Figure 2
a. Refer to Figure 1:
i. State whether the source charge is positively or negatively charged.
ii. Figure 1 contains arrows that are outwardly pointing. By convention, state how
the directions of field lines are detected.
b. Comparing Figure 1 and Figure 2, you will notice Figure 2 does not have any
arrowheads. Observe the sign of charges for each source charge, (in Figure 2)
and state the direction the arrowheads should be pointing to make it accurate.
3. Examine the charge distribution in the following diagram.
N
- 4.0 x 10-5 C
24cm
91
24cm
+2.0 x 10-5 C
92
2
- 4.0 x 10-5 C
a. Determine the net force charge acting at q1 (+2.0 × 10-5 C), caused…
Task 3: Electric potential energy and
electric potential
1. Examine the charge distribution shown.
-4
Ci
Sphere 1 has a charge of +3.0 × 10 C';
sphere 2 has a charge of -3.0 × 10°
and sphere 3 has a charge of +3.0 × 10-4 C
. Assume that Coulomb's constant, (k) is equal
to 9.0 × 109 Nm²
C2
Show all your work when completing each of
these questions.
4.24 m.
N
3.00 m
4.24 m
3.00 m
3.00 m
93
92
91
a. Determine the total electric potential
energy for the charge distribution.
b. Determine the total electric potential at
point Z.
Chapter 18 Solutions
Fundamentals of Physics Extended
Ch. 18 - The initial length L, change in temperature T, and...Ch. 18 - Figure 18-24 shows three linear temperature...Ch. 18 - Materials A, B, and C are solids that are at their...Ch. 18 - A sample A of liquid water and a sample B of ice,...Ch. 18 - Question 4 continued: Graphs b through f of Fig....Ch. 18 - Figure 18-26 shows three different arrangements of...Ch. 18 - Figure 18-27 shows two closed cycles on p-V...Ch. 18 - For which cycle in Fig. 18-27, traversed...Ch. 18 - Three different materials of identical mass are...Ch. 18 - A solid cube of edge length r, a solid sphere of...
Ch. 18 - A hot object is dropped into a thermally insulated...Ch. 18 - Suppose the temperature of a gas is 373.15 K when...Ch. 18 - Two constant-volume gas thermometers are...Ch. 18 - A gas thermometer is constructed of two...Ch. 18 - a In 1964, the temperature in the Siberian village...Ch. 18 - At what temperature is the Fahrenheit scale...Ch. 18 - On a linear X temperature scale, water freezes at...Ch. 18 - ILW Suppose that on a linear temperature scale X,...Ch. 18 - At 20C, a brass cube has edge length 30 cm. What...Ch. 18 - ILW A circular hole in an aluminum plate is 2.725...Ch. 18 - An aluminum flagpole is 33 m high. By how much...Ch. 18 - Prob. 11PCh. 18 - An aluminum-alloy rod has a length of 10.000 cm at...Ch. 18 - SSM Find the change in volume of an aluminum...Ch. 18 - When the temperature of a copper coin is raised by...Ch. 18 - ILW A steel rod is 3.000 cm in diameter at 25.00C....Ch. 18 - When the temperature of a metal cylinder is raised...Ch. 18 - SSM WWW An aluminum cup of 100 cm3 capacity is...Ch. 18 - At 20C, a rod is exactly 20.05 cm long on a steel...Ch. 18 - GO A vertical glass tube of length L = 1.280 000 m...Ch. 18 - GO In a certain experiment, a small radioactive...Ch. 18 - SSM ILW As a result of a temperature rise of 32 C,...Ch. 18 - One way to keep the contents of a garage from...Ch. 18 - SSM A small electric immersion healer is used to...Ch. 18 - A certain substance has a mass per mole of 50.0...Ch. 18 - Prob. 25PCh. 18 - What muss of butter, which has a usable energy...Ch. 18 - SSM Calculate the minimum amount of energy, in...Ch. 18 - How much water remains unfrozen after 50.2 kJ is...Ch. 18 - In a solar water heater, energy from the Sun is...Ch. 18 - A 0.400 kg simple is placed in a cooling apparatus...Ch. 18 - ILW What mass of steam at 100C must be mixed with...Ch. 18 - The specific heat of a substance varies with...Ch. 18 - Nonmetric version: a How long does a 2.0 105...Ch. 18 - GO Samples A and B are at different initial...Ch. 18 - An insulated Thermos contains l30 cm3 of hot...Ch. 18 - A 150 g copper bowl contains 220 g of water, both...Ch. 18 - A person makes a quantity of iced tea by mixing...Ch. 18 - A 0.530 kg sample of liquid water and a sample of...Ch. 18 - GO Ethyl alcohol has a boiling point of 78.0C, a...Ch. 18 - GO Calculate the specific heat of a metal from the...Ch. 18 - SSM WWW a Two 50 g ice cubes are dropped into 200...Ch. 18 - GO A 20.0 g copper ring at 0.000C has an inner...Ch. 18 - In Fig. 18-37, a gas sample expands from V0 to...Ch. 18 - GO A thermodynamic system is taken from stale A to...Ch. 18 - SSM ILW A gas within a closed chamber undergoes...Ch. 18 - Suppose 200 J of work is done on a system and 70.0...Ch. 18 - Prob. 47PCh. 18 - GO As a gas is held within a closed chamber, it...Ch. 18 - GO Figure 18-42 represents a closed cycle for a...Ch. 18 - GO A lab sample of gas is taken through cycle abca...Ch. 18 - A sphere of radius 0.500 m, temperature 27.0C, and...Ch. 18 - The ceiling of a single-family dwelling in a cold...Ch. 18 - SSM Consider the slab shown in Fig. 18-18. Suppose...Ch. 18 - If you were to walk briefly in space without a...Ch. 18 - ILW A cylindrical copper rod of length 1.2 m and...Ch. 18 - The giant hornet Vespa mandarinia japonica preys...Ch. 18 - Prob. 57PCh. 18 - A solid cylinder of radius r1 = 2.5 cm, length h1...Ch. 18 - Prob. 59PCh. 18 - GO Figure 18-46 shows the cross section of a wall...Ch. 18 - SSM A 5.0 cm slap has formed on an outdoor tank of...Ch. 18 - Leidenfrost effect. A water drop will last about 1...Ch. 18 - GO Figure 18-49 shows in cross section a wall...Ch. 18 - Prob. 64PCh. 18 - Ice has formed on a shallow pond, and a shady...Ch. 18 - GO Evaporative cooling of beverages. A cold...Ch. 18 - In the extrusion of cold chocolate from a tube,...Ch. 18 - Prob. 68PCh. 18 - Figure 18-51 displays a closed cycle for a gas....Ch. 18 - In a certain solar house, energy from the Sun is...Ch. 18 - A 0.300 kg sample is placed in a cooling apparatus...Ch. 18 - The average rate at which energy is conducted...Ch. 18 - What is the volume increase of an aluminum cube...Ch. 18 - In a series of experiment, block B is to be placed...Ch. 18 - Figure 18-54 displays a dosed cycle for a gas....Ch. 18 - Three equal-length straight rods, of aluminum,...Ch. 18 - SSM The temperature of a 0.700 kg cube of ice is...Ch. 18 - GO Icicles. Liquid water coats an active growing...Ch. 18 - SSM A sample of gas expands from an initial...Ch. 18 - Figure 18-56a shows a cylinder containing gas and...Ch. 18 - SSM A sample of gas undergoes a transition from an...Ch. 18 - Prob. 82PCh. 18 - SSM The temperature of a Pyrex disk is changed...Ch. 18 - a Calculate the rate at which body heat is...Ch. 18 - SSM A 2.50 kg Jump of aluminum is heated to 92.0C...Ch. 18 - A glass window pane is exactly 20 cm by 30 cm at...Ch. 18 - A recruit can join the semi-secret 300 F club at...Ch. 18 - A steel rod at 25.0C is bolted at both ends and...Ch. 18 - An athlete needs to lose weight and decides to do...Ch. 18 - Soon after Earth was formed, heat released by the...Ch. 18 - Prob. 91PCh. 18 - A rectangular plate of glass initially has the...Ch. 18 - Suppose that you intercept 5.0 103 of the energy...Ch. 18 - A thermometer of mass 0.0550 kg and of specific...Ch. 18 - A sample of gas expands from V1 = 1.0 m3 and p1 =...Ch. 18 - Figure 18-59 shows a composite bar of length L =...Ch. 18 - On finding your stove out of order, you decide to...Ch. 18 - The p-V diagram in the Fig. 18-60 shows two paths...Ch. 18 - A cube of edge length 6.0 106 m, emissivity 0.75,...Ch. 18 - A flow calorimeter is a device used to measure the...Ch. 18 - An object of mass 6.00 kg falls through a height...Ch. 18 - The Pyrex glass mirror in a telescope has a...Ch. 18 - The area A of a rectangular plate is ab = 1.4 m2....Ch. 18 - Consider the liquid in a barometer whose...Ch. 18 - A pendulum clock with a pendulum made of brass is...Ch. 18 - Prob. 106PCh. 18 - Prob. 107PCh. 18 - A 1700 kg Buick moving at 83 km/h brakes to a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Explain how the use of an oxygen isotope helped elucidate the chemistry of photosynthesis.
Campbell Biology (11th Edition)
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
Choose the best answer to each of the following. Explain your reasoning. When it summer in Australia, it is (a)...
Cosmic Perspective Fundamentals
Could an organism be a fermenter and also be both MR and V—P negative? Explain.
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- I need help with question 15 first picture has link to labarrow_forwardTask 1: Universal gravitation and gravitational fields Answer both parts with a complete solution. A complete solution means that you have provided the Given, Required, Analysis, Solution and Statement. Be sure that you communicate your final answer with appropriate units and the correct number of significant figures. 1. The earth has a mass of 5.98 × 1024 kg and the moon has a mass of 7.35 × 1022 kg. The distance from the centre of the moon to the centre of the earth is 3.84 × 109 m. A rocket with a total mass of 1,200 kg is 3.0 × 108 m from the centre of the earth and directly in between the earth and the moon. Find the net gravitational force on the rocket from the earth and moon. 2. A 500 kg satellite experiences a gravitational force of 3,000 N, while moving in a circular orbit around the earth. a. Determine the radius of the circular orbit. b. Determine the speed of the satellite. c. Determine the period of the orbit.arrow_forwardQuestions 1. Suppose the force acting on an object and the velocity of the object are in opposite directions. Then the work done by the force is 2. In order to do work, a system must have 3. As a skier speeds up while gliding down a slope, _energy is converted into. energy. 4. A weight lifter raises a 90 kg barbell 1.9 m. What is the potential energy gain of the barbell? 3arrow_forward
- 20.) Another observer is standing at the train station as Train B passes by at a distance of d= 6,000 m away. (See the diagram). At that instant, what is the minimum (nonzero) distance, L, that the trains could be separated by in order to have constructive interference at the location of the observer? Assume Train A blows also blows its horn emitting a frequency of 400 Hz. Give an answer in meters. (A) 101 (D) 67.9 (B) 87.6 (E) 76.5 (C) 45.2 --L 4 B Darrow_forwardProblem Four. A bullet with mass m = 20.0 g bullet is fired into a block with mass M = 7.00 kg which is attached to a spring. The bullet is moving with a speed of 350 m/s at the moment of collision. After the collision, the block (with bullet embedded) compresses the spring to a maximum displacement of 48.0 cm. 8.) Find the spring constant in N/m. (A) 90.2 (B) 30.3 (C) 55.3 (D) 41.7 (E) 14.3 9.) After the spring is compressed, the system undergoes simple harmonic motion. Find the magnitude of the velocity when the block (with embedded bullet) is a third of the way through a full amplitude. Give an answer in cm/s. (A) 76 (B) 54 (C) 32 (D) 16 (E) 94arrow_forwardProblem Two. A diatomic ideal gas (with translation and rotation degrees of freedom) is taken around the process shown. 3.) Find the work done on the gas (in J) after one cycle ABCA. (A)-30 (B)-10 (C)-20 (D) 20 P(pa) 40 (E) 30 4.) By what factor does the internal energy at point A compare to the internal energy at point C? (A) 10 (B) 6.0 (C) 24 (D) 12 (E) 8.0 5.) Find the heat transfer (in J) during the process A-B. 10 10 (A)-70 (B) 15 (C) 70 (D)-15 (E)-56 6.) Find the heat transfer (in J) during the (A)-225 (B) 135 process B-C. (C) -135 (D) 225 (E)-70 C B A V (m³) 3arrow_forward
- Problem Five. An object simple harmonic motion as described by the figure. 10.) Find the angular frequency in rad/s. x (cm) 4.00 NA 2.00 (A) 0.393 (B) 0.430 (C) 0.803 (D) 0.234 (E) 0.157 0.00 4 8 11.) Find the maximum acceleration in cm/s². -2.00 (A) 0.186 (B) 0.428 (C) 0.617 (D) 0.397 (E) 0.987 -4.00 1(s) 12 16 12.) Find the acceleration (in cm/s²) when t = 6.80 s. (A) 0.159 (B) 0.732 (C) 0.550 13.) Find the time (in s) when the position is a quarter of the amplitude. (A) 7.56 (B) 0.56 (C) 1.18 (D) 0.297 (E) 0.452 (D) 3.36 (E) 4.52 14.) If the graph represents a pendulum with a length of 1.40 m that is located on a space station, find the gravitational acceleration on the space station (in m/s²). (A) 0.182 (B) 0.499 (C) 0.357 (D) 0.973 (E) 0.216 15.) If the graph represents a spring-block system with a spring constant that is 11.6 N/m, find the mass of the block in kg. (A) 75.2 (B) 68.7 (C) 82.5 (D) 24.7 (E) 54.6arrow_forwardProblem Three. The surface of the Sun is approximately 5,850 K. The average surface temperature of Mars is approximately 210 K. 7.) Find the entropy change of the system (in units of J/K) when 7,000 J of energy is transferred by heat from the Sun to Mars. (B) 32.1 (A) 25.4 (C) 24.2 (D) 19.1 (E) 21.8 5001arrow_forwardProblem One. There are 4.0 moles of an ideal gas contained at 273 K. A piston is used to compress the gas into a new volume which is a quarter of the old volume in an isothermal process. 1.) Find the work done on the gas. Give an answer in kJ. (A)-6.3 (D) 6.3 (B) 13 (E)-13 (C) 8.7 2.) If it requires 84.0 kJ to achieve the process described above, find the efficiency percent of this process. (A) 93 (B) 80 (C) 19 (D) 15 (E) 53arrow_forward
- Problem Six. Two trains on separate tracks move away from each other. Train A has a speed of 156 km/h; train B, a speed of 72.0 km/h. Train B blows its horn, emitting a frequency of 400 Hz. 16.) Find the frequency (in Hz) heard by the engineer on Train A. (A) 536 (B) 476 (C) 543 (D) 226 (E) 330 17.) If the train lowers the volume of its horn by 6.0 decibels, by what has the intensity decreased by? (A) 0.25 (B) 0.33 (C) 0.51 (D) 0.62 (E) 0.76 18.) If an observer hears the train horn and then moves to a location where it's one fourth as loud, by what factor did the observer's distance from the train change by? (A) √2 (B) 2 (C) 4 (D) √2 (E) 6 19.) If the temperature of the air is doubled, find what factor the speed of the sound in air changes by. (A) 4 (B) 1/4 (C) 2 (D) √√2 (E)arrow_forward7. A skier starts from rest at the top of each of the hills shown in the figure below. On which hill will the skier have the highest speed at the bottom if we ignore friction: (a), (b), (c), (d), or (e)? (a) (b) (c) (d) 8. Answer Conceptual Question 7 (above) assuming a small amount of friction.arrow_forwardI need help with part C using info provided above part a.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Work-Energy Theorem | Physics Animation; Author: EarthPen;https://www.youtube.com/watch?v=GSTW7Mlaoas;License: Standard YouTube License, CC-BY