Physical Chemistry
Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
Question
Book Icon
Chapter 18, Problem 18.24E
Interpretation Introduction

Interpretation:

The vibrational partition function for CH4(g) at 298K is to be calculated.

Concept introduction:

A molecule is made up of atoms that are bonded together by covalent bonds. These bonds undergo a to and fro movement to vibrate. This vibration of the molecule contributes to the overall partition function of the system. The vibrational partition function of the polyatomic molecule is represented as,

qvib=j=13N611eθv,j/T

Where,

T represents the temperature (K).

θv,j represents the jth vibrational temperature.

N represents the number of atoms present in the molecule.

Blurred answer
Students have asked these similar questions
The methyl chloride molecule, CH3Cl, has three non-degenerate vibrations with harmonic wavenumbers 3088, 1396 and 751 cm–1 respectively and three doubly-degenerate vibrations with harmonic wavenumbers 3183, 1496 and 1036 cm–1 respectively. Calculate the vibrational partition function for the methyl chloride molecule at 1200 K.
A certain atom has a triply degenerate ground level, a non-degenerate electronically excited level at 850 cm–1, and a fivefold degenerate level at 1100 cm−1. Calculate the partition function of these electronic states at 2000 K. What is the relative population of each level at 2000 K?
Calculate the rotational partition function of SO2 at 298 K from its rotational constants 2.027 36 cm–1, 0.344 17 cm–1, and 0.293 535 cm–1 and use your result to calculate the rotational contribution to the molar entropy of sulfur dioxide at 25 °C.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,